7 research outputs found

    Wechselwirkungen von Mineralstaubpartikeln mit thermodynamischen und dynamischen Prozessen in der Atmosphäre über Westafrika

    Get PDF
    Mineral dust particles can have a strong influence on atmospheric processes. If the spatial and temporal variability of the optical properties of dust particles is neglected in model experiments, the calculation of atmospheric variables is incorrect. In this study the regional model system COSMO-ART was extended in order to explicitly account for dust particles. 3-dimensional studies were performed for two different dust events in Westafrica. Amongst others the AEJ is affected by dust particles

    The link between marine sediment records and changes in Holocene Saharan landscape: simulating the dust cycle

    Get PDF
    Marine sediment records reveal an abrupt and strong increase in dust deposition in the North Atlantic at the end of the African Humid Period about 4.9 to 5.5 ka ago. The change in dust flux has been attributed to varying Saharan land surface cover. Alternatively, the enhanced dust accumulation is linked to enhanced surface winds and a consequent intensification of coastal upwelling. Here we demonstrate for the first time the direct link between dust accumulation in marine cores and changes in Saharan land surface. We simulate the mid-Holocene (6 ka BP) and pre-industrial (1850 AD) dust cycle as a function of Saharan land surface cover and atmosphere-ocean conditions using the coupled atmosphere–aerosol model ECHAM6.1-HAM2.1. Mid-Holocene surface characteristics, including vegetation cover and lake surface area, are derived from proxy data and simulations. In agreement with data from marine sediment cores, our simulations show that mid-Holocene dust deposition fluxes in the North Atlantic were two to three times lower compared with pre-industrial fluxes. We identify Saharan land surface characteristics to be the main control on dust transport from North Africa to the North Atlantic. We conclude that the increase in dust accumulation in marine cores is directly linked to a transition of the Saharan landscape during the Holocene and not due to changes in atmospheric or ocean conditions alone

    The global aerosol-climate model ECHAM6.3-HAM2.3-Part 2: Cloud evaluation, aerosol radiative forcing, and climate sensitivity

    No full text
    The global aerosol–climate model ECHAM6.3–HAM2.3 (E63H23) as well as the previous model versions ECHAM5.5–HAM2.0 (E55H20) and ECHAM6.1–HAM2.2 (E61H22) are evaluated using global observational datasets for clouds and precipitation. In E63H23, the amount of low clouds, the liquid and ice water path, and cloud radiative effects are more realistic than in previous model versions. E63H23 has a more physically based aerosol activation scheme, improvements in the cloud cover scheme, changes in the detrainment of convective clouds, changes in the sticking efficiency for the accretion of ice crystals by snow, consistent ice crystal shapes throughout the model, and changes in mixed-phase freezing; an inconsistency in ice crystal number concentration (ICNC) in cirrus clouds was also removed. Common biases in ECHAM and in E63H23 (and in previous ECHAM–HAM versions) are a cloud amount in stratocumulus regions that is too low and deep convective clouds over the Atlantic and Pacific oceans that form too close to the continents (while tropical land precipitation is underestimated). There are indications that ICNCs are overestimated in E63H23. Since clouds are important for effective radiative forcing due to aerosol–radiation and aerosol–cloud interactions (ERFari+aci) and equilibrium climate sensitivity (ECS), differences in ERFari+aci and ECS between the model versions were also analyzed. ERFari+aci is weaker in E63H23 (−1.0 W m−2) than in E61H22 (−1.2 W m−2) (or E55H20; −1.1 W m−2). This is caused by the weaker shortwave ERFari+aci (a new aerosol activation scheme and sea salt emission parameterization in E63H23, more realistic simulation of cloud water) overcompensating for the weaker longwave ERFari+aci (removal of an inconsistency in ICNC in cirrus clouds in E61H22). The decrease in ECS in E63H23 (2.5 K) compared to E61H22 (2.8 K) is due to changes in the entrainment rate for shallow convection (affecting the cloud amount feedback) and a stronger cloud phase feedback. Experiments with minimum cloud droplet number concentrations (CDNCmin) of 40 cm−3 or 10 cm−3 show that a higher value of CDNCmin reduces ERFari+aci as well as ECS in E63H23

    Global cycling and climate effects of aeolian dust controlled by biological soil crusts

    Get PDF
    Biological soil crusts (biocrusts) cover similar to 12% of the global land surface. They are formed by an intimate association between soil particles, photoautotrophic and heterotrophic organisms, and they effectively stabilize the soil surface of drylands. Quantitative information on the impact of biocrusts on the global cycling and climate effects of aeolian dust, however, is not available. Here, we combine the currently limited experimental data with a global climate model to investigate the effects of biocrusts on regional and global dust cycling under current and future conditions. We estimate that biocrusts reduce the global atmospheric dust emissions by similar to 60%, preventing the release of similar to 0.7 Pg dust per year. Until 2070, biocrust coverage is expected to be severely reduced by climate change and land-use intensification. The biocrust loss will cause an increased dust burden, leading to a reduction of the global radiation budget of around 0.12 to 0.22W m(-2), corresponding to about 50% of the total direct forcing of anthropogenic aerosols. This biocrust control on dust cycling and its climate impacts have important implications for human health, biogeochemical cycling and the functioning of the ecosystems, and thus should be considered in the modelling, mitigation and management of global change.ISSN:1752-0908ISSN:1752-089

    The aerosol-climate model ECHAM6.3-HAM2.3: Aerosol evaluation

    No full text
    We introduce and evaluate the aerosol simulations with the global aerosol-climate model ECHAM6.3-HAM2.3, which is the aerosol component of the fully coupled aerosol-chemistry-climate model ECHAM-HAMMOZ. Both the host atmospheric climate model ECHAM6.3 and the aerosol model HAM2.3 were updated from previous versions. The updated version of the HAM aerosol model contains improved parameterizations of aerosol processes such as cloud activation, as well as updated emission fields for anthropogenic aerosol species and modifications in the online computation of sea salt and mineral dust aerosol emissions. Aerosol results from nudged and free running simulations for the 10-year period 2003 to 2012 are compared to various measurements of aerosol properties. While there are regional deviations between model and observations, the model performs well overall in terms of aerosol optical thickness, but may underestimate coarse mode aerosol concentrations to some extent, so that the modeled particles are smaller than indicated by the observations. Sulfate aerosol measurements in the US and Europe are reproduced well by the model, while carbonaceous aerosol species are biased low. Both mineral dust and sea salt aerosol concentrations are improved compared to previous versions of ECHAM-HAM. The evaluation of the simulated aerosol distributions serves as a basis for the suitability of the model for simulating aerosol-climate interactions in a changing climate
    corecore