18 research outputs found

    A B23-interacting sequence as a tool to visualize protein interactions in a cellular context.

    Get PDF
    International audienceWe report the characterization of a nucleolar localization sequence (NoLS) that targets the green fluorescent protein (GFP) into the granular component (GC) of nucleoli. This NoLS interacts in vitro specifically and directly with the major nucleolar protein B23 and more precisely with the region of B23 including the two acidic stretches. The affinity of NoLS for B23 is stronger than that of the HIV-1 Rev protein in vitro. Moreover, B23-NoLS interaction also occurs in vivo. Indeed, (1) NoLS confers on the GFP the behavior of B23 throughout the cell cycle, (2) the GFP-NoLS fusion and B23 remain colocalized after drug treatments, (3) a selective delocalization of B23 from nucleoli to nucleoplasm induces a concomitent delocalization of the GFP-NoLS fusion, and (4) the fusion of NoLS to fibrillarin makes it possible to colocalize fibrillarin and B23. Interestingly, by fusing NoLS to fibrillarin, both fibrillarin and the fibrillarin partner Nop56 are mislocalized in the GC of nucleoli. Similarly, by fusing the NoLS to MafG, part of the nuclear transcription factor NF-E2 composed of both MafG and p45 NF-E2, NF-E2 is redirected from the nucleoplasm to the nucleoli. Thus, we propose that the NoLS may be used as a tool to visualize and prove protein interactions in a cellular context

    Gene expression analysis in human breast cancer associated blood vessels.

    Get PDF
    Angiogenesis is essential for solid tumour growth, whilst the molecular profiles of tumour blood vessels have been reported to be different between cancer types. Although presently available anti-angiogenic strategies are providing some promise for the treatment of some cancers it is perhaps not surprisingly that, none of the anti-angiogenic agents available work on all tumours. Thus, the discovery of novel anti-angiogenic targets, relevant to individual cancer types, is required. Using Affymetrix microarray analysis of laser-captured, CD31-positive blood vessels we have identified 63 genes that are upregulated significantly (5-72 fold) in angiogenic blood vessels associated with human invasive ductal carcinoma (IDC) of the breast as compared with blood vessels in normal human breast. We tested the angiogenic capacity of a subset of these genes. Genes were selected based on either their known cellular functions, their enriched expression in endothelial cells and/or their sensitivity to anti-VEGF treatment; all features implicating their involvement in angiogenesis. For example, RRM2, a ribonucleotide reductase involved in DNA synthesis, was upregulated 32-fold in IDC-associated blood vessels; ATF1, a nuclear activating transcription factor involved in cellular growth and survival was upregulated 23-fold in IDC-associated blood vessels and HEX-B, a hexosaminidase involved in the breakdown of GM2 gangliosides, was upregulated 8-fold in IDC-associated blood vessels. Furthermore, in silico analysis confirmed that AFT1 and HEX-B also were enriched in endothelial cells when compared with non-endothelial cells. None of these genes have been reported previously to be involved in neovascularisation. However, our data establish that siRNA depletion of Rrm2, Atf1 or Hex-B had significant anti-angiogenic effects in VEGF-stimulated ex vivo mouse aortic ring assays. Overall, our results provide proof-of-principle that our approach can identify a cohort of potentially novel anti-angiogenic targets that are likley to be, but not exclusivley, relevant to breast cancer

    Assemblage in vivo des complexes snoRNP à boîte C/D

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF

    Roles of cell fusion, hybridization and polyploid cell formation in cancer metastasis

    No full text
    Cell-cell fusion is a normal biological process playing essential roles in organ formation and tissue differentiation, repair and regeneration. Through cell fusion somatic cells undergo rapid nuclear reprogramming and epigenetic modifications to form hybrid cells with new genetic and phenotypic properties at a rate exceeding that achievable by random mutations. Factors that stimulate cell fusion are inflammation and hypoxia. Fusion of cancer cells with non-neoplastic cells facilitates several malignancy-related cell phenotypes, e.g., reprogramming of somatic cell into induced pluripotent stem cells and epithelial to mesenchymal transition. There is now considerable in vitro, in vivo and clinical evidence that fusion of cancer cells with motile leucocytes such as macrophages plays a major role in cancer metastasis. Of the many changes in cancer cells after hybridizing with leucocytes, it is notable that hybrids acquire resistance to chemo- and radiation therapy. One phenomenon that has been largely overlooked yet plays a role in these processes is polyploidization. Regardless of the mechanism of polyploid cell formation, it happens in response to genotoxic stresses and enhances a cancer cells ability to survive. Here we summarize the recent progress in research of cell fusion and with a focus on an important role for polyploid cells in cancer metastasis. In addition, we discuss the clinical evidence and the importance of cell fusion and polyploidization in solid tumors

    Use of the mouse aortic ring assay to study angiogenesis

    No full text
    Here we provide a protocol for quantitative three-dimensional ex vivo mouse aortic ring angiogenesis assays, in which developing microvessels undergo many key features of angiogenesis over a timescale similar to that observed in vivo. The aortic ring assay allows analysis of cellular proliferation, migration, tube formation, microvessel branching, perivascular recruitment and remodeling-all without the need for cellular dissociation-thus providing a more complete picture of angiogenic processes compared with traditional cell-based assays. Our protocol can be applied to aortic rings from embryonic stage E18 through to adulthood and can incorporate genetic manipulation, treatment with growth factors, drugs or siRNA. This robust assay allows assessment of the salient steps in angiogenesis and quantification of the developing microvessels, and it can be used to identify new modulators of angiogenesis. The assay takes 6-14 d to complete, depending on the age of the mice, treatments applied and whether immunostaining is performed

    FAK-heterozygous mice display enhanced tumour angiogenesis

    Get PDF
    Genetic ablation of endothelial focal adhesion kinase (FAK) can inhibit pathological angiogenesis, suggesting that loss of endothelial FAK is sufficient to reduce neovascularization. Here we show that reduced stromal FAK expression in FAK-heterozygous mice unexpectedly enhances both B16F0 and CMT19T tumour growth and angiogenesis. We further demonstrate that cell proliferation and microvessel sprouting, but not migration, are increased in serum-stimulated FAK-heterozygous endothelial cells. FAK-heterozygous endothelial cells display an imbalance in FAK phosphorylation at pY397 and pY861 without changes in Pyk2 or Erk1/2 activity. By contrast, serum-stimulated phosphorylation of Akt is enhanced in FAK-heterozygous endothelial cells and these cells are more sensitive to Akt inhibition. Additionally, low doses of a pharmacological FAK inhibitor, although too low to affect FAK autophosphorylation in vitro, can enhance angiogenesis ex vivo and tumour growth in vivo. Our results highlight a potential novel role for FAK as a nonlinear, dose-dependent regulator of angiogenesis where heterozygous levels of FAK enhance angiogenesis

    Validation of GPR164 and LIFR microarray expression data by immunofluorescence staining of human normal breast and IDC.

    No full text
    <p>Representative confocal images of vessels from normal and IDC breast sections immunostained for CD31 and either GPR164 (<b>A</b>) or LIFR (<b>B</b>). Relative expression levels were quantified and means + s.e.m. are given for each antigen. n = 6 individual tissue samples, *p<0.05, ‡ p<0.06, scale bars 50 µm.</p

    Affymetrix data from LCM blood vessels.

    No full text
    <p>(<b>A</b>) Hierarchal clustering of laser captured blood vessels from 4 normal and 5 IDC samples with percentage present call rate. (<b>B</b>) Heat map that shows the trend in expression of 73 probe-sets, 70 genes across the six samples. The blue indicates under-expression while the red indicates over-expression with gene name and accession number given.</p
    corecore