34 research outputs found

    Biogeography in the deep : hierarchical population genomic structure of two beaked whale species

    Get PDF
    Funding for this research was provided by the Office of Naval Research, Award numbers N000141613017 and N000142112712. ABO was supported by a partial studentship from the University of St Andrews, School of Biology; OEG by the Marine Alliance for Science and Technology for Scotland (Scottish Funding Council grant HR09011); ELC by a Rutherford Discovery Fellowship from the Royal Society of New Zealand Te Aparangi; NAS by a Ramon y Cajal Fellowship from the Spanish Ministry of Innovation; MLM by the European Union’s Horizon 2020 Research and Innovation Programme (Marie Skłodowska-Curie grant 801199); CR by the Marine Institute (Cetaceans on the Frontier) and the Irish Research Council; and MTO by the Hartmann Foundation.The deep sea is the largest ecosystem on Earth, yet little is known about the processes driving patterns of genetic diversity in its inhabitants. Here, we investigated the macro- and microevolutionary processes shaping genomic population structure and diversity in two poorly understood, globally distributed, deep-sea predators: Cuvier’s beaked whale (Ziphius cavirostris) and Blainville’s beaked whale (Mesoplodon densirostris). We used double-digest restriction associated DNA (ddRAD) and whole mitochondrial genome (mitogenome) sequencing to characterise genetic patterns using phylogenetic trees, cluster analysis, isolation-by-distance, genetic diversity and differentiation statistics. Single nucleotide polymorphisms (SNPs; Blainville’s n = 43 samples, SNPs=13988; Cuvier’s n = 123, SNPs= 30479) and mitogenomes (Blainville’s n = 27; Cuvier’s n = 35) revealed substantial hierarchical structure at a global scale. Both species display significant genetic structure between the Atlantic, Indo-Pacific and in Cuvier’s, the Mediterranean Sea. Within major ocean basins, clear differentiation is found between genetic clusters on the east and west sides of the North Atlantic, and some distinct patterns of structure in the Indo-Pacific and Southern Hemisphere. We infer that macroevolutionary processes shaping patterns of genetic diversity include biogeographical barriers, highlighting the importance of such barriers even to highly mobile, deep-diving taxa. The barriers likely differ between the species due to their thermal tolerances and evolutionary histories. On a microevolutionary scale, it seems likely that the balance between resident populations displaying site fidelity, and transient individuals facilitating gene flow, shapes patterns of connectivity and genetic drift in beaked whales. Based on these results, we propose management units to facilitate improved conservation measures for these elusive species.Publisher PDFPeer reviewe

    Marine mammal hotspots across the circumpolar Arctic

    Get PDF
    Aim: Identify hotspots and areas of high species richness for Arctic marine mammals. Location: Circumpolar Arctic. Methods: A total of 2115 biologging devices were deployed on marine mammals from 13 species in the Arctic from 2005 to 2019. Getis-Ord Gi* hotspots were calculated based on the number of individuals in grid cells for each species and for phyloge-netic groups (nine pinnipeds, three cetaceans, all species) and areas with high spe-cies richness were identified for summer (Jun-Nov), winter (Dec-May) and the entire year. Seasonal habitat differences among species’ hotspots were investigated using Principal Component Analysis. Results: Hotspots and areas with high species richness occurred within the Arctic continental-shelf seas and within the marginal ice zone, particularly in the “Arctic gateways” of the north Atlantic and Pacific oceans. Summer hotspots were generally found further north than winter hotspots, but there were exceptions to this pattern, including bowhead whales in the Greenland-Barents Seas and species with coastal distributions in Svalbard, Norway and East Greenland. Areas with high species rich-ness generally overlapped high-density hotspots. Large regional and seasonal dif-ferences in habitat features of hotspots were found among species but also within species from different regions. Gap analysis (discrepancy between hotspots and IUCN ranges) identified species and regions where more research is required. Main conclusions: This study identified important areas (and habitat types) for Arctic marine mammals using available biotelemetry data. The results herein serve as a benchmark to measure future distributional shifts. Expanded monitoring and teleme-try studies are needed on Arctic species to understand the impacts of climate change and concomitant ecosystem changes (synergistic effects of multiple stressors). While efforts should be made to fill knowledge gaps, including regional gaps and more com-plete sex and age coverage, hotspots identified herein can inform management ef-forts to mitigate the impacts of human activities and ecological changes, including creation of protected areas

    A simple route to single-nucleotide polymorphisms in a nonmodel species:identification and characterization of SNPs in the Artic ringed seal (Pusa hispida hispida)

    No full text
    Although single-nucleotide polymorphisms (SNPs) have become the marker of choice in the field of human genetics, these markers are only slowly emerging in ecological, evolutionary and conservation genetic analyses of nonmodel species. This is partly because of difficulties associated with the discovery and characterization of SNP markers. Herein, we adopted a simple straightforward approach to identifying SNPs, based on screening of a random genomic library. In total, we identified 768 SNPs in the ringed seal, Pusa hispida hispida, in samples from Greenland and Svalbard. Using three seal samples, SNPs were discovered at a rate of one SNP per 402 bp, whereas re-sequencing of 96 seals increased the density to one SNP per 29 bp. Although applicable to any species of interest, the approach is especially well suited for SNP discovery in nonmodel organisms and is easily implemented in any standard genetics laboratory, circumventing the need for prior genomic data and use of next-generation sequencing facilities

    Historical population dynamics of ringed seals, Pusa hispida, of the Svalbard archipelago:Predicting the response to climate change

    No full text
    The ringed seal (Pusa hispida) is a pagophilic seal species with a life cycle closely associated with the sea ice and also the key prey species for the polar bear (Ursus maritimus). Global warming is rapidly diminishing the extent of summer sea ice in the Arctic, greatly reducing habitat availability for ringed seals and indirectly influencing the prey availability for polar bears. Predicting the effects of climate change on the abundance of ringed seals is essential for effective long-term management, but is challenging due to the complex relationship between climate change and ecological dynamics. Understanding how the historical population dynamics of ringed seals have responded to past climate may provide insights into the responses to current and future climate changes. In this study we have employed the Bayesian skyline plots, a coalescence-based method for inference of historical population dynamics, using mitochondrial DNA control region nucleotide sequences collected from ringed seals and polar bears at the Svalbard. Our analysis revealed a pattern of population expansion followed by contraction in ringed seals, suggesting a possible correlation with historical sea ice dynamics. Preliminary results from the polar bear suggest a correlation with ringed seal population dynamics. Additional on-going data analyses of a large number of high-resolution SNPs will add further rigor to our study. Our findings have implications for conservation of ringed seal and polar bear, in addition to providing insights into the evolutionary ecology of key polar marine mammals in the Arctic
    corecore