43 research outputs found

    A New Species of the Genus Trimeresurus from Southwest China (Squamata: Viperidae)

    Get PDF
    Species from the Trimeresurus popeiorum complex (Subgenus: Popeia) is a very complex group. T. popeiorum is the only Popeia species known from China. During the past two years, five adult Popeia specimens (4 males, 1 female) were collected from Yingjiang County, Southern Yunnan, China. Molecular, morphological and ecological data show distinct differences from known species, herein we describe these specimens as a new species Trimeresurus yingjiangensis sp. nov Chen, Ding, Shi and Zhang, 2018. Morphologically, the new species distinct from other Popeia species by a combination of following characters: (1) dorsal body olive drab,without cross bands on the scales; (2) a conspicuous bicolor ventrolateral stripe present on each side of males, first row of dorsal scales firebrick with a white ellipse dot on posterior upper part in male, these strips absent in females; (3) eyes firebrick in both gender; (4) suboculars separated from 3rd upper labial by one scale on each side; (5) ventrals 164–168 (n = 5); (6) MSR 21

    The TRAPs From Microglial Vesicles Protect Against Listeria Infection in the CNS

    Get PDF
    Previous studies have demonstrated that T cells and microglia could fight against cerebral Listeria monocytogenes (Listeria); however, their synergistic anti-Listeria mechanisms remain unknown. Following Listeria infection in a culture system, we found that microglia, but not nerve cells, could release extracellular traps (ETs) which originated from microglial vesicles. Specific inhibitor analysis showed that extracellular DNA (eDNA), matrix metallopeptidases (MMP9 and MMP12), citrullinated histone H3, and peptidyl arginine deiminase 2 were the major components of microglial ETs (MiETs) and were also the components of vesicles. Systematic analysis indicated that Listeria-induced MiETs were cytosolic reactive oxygen species (ROS)- and NADPH oxidase (NOX)-dependent and involved ERK. MiETs were exhibited in Listeria-infected mouse brain and might protected against Listeria infection via bacterial killing in a mouse meningitis model, and MiETs existed in cerebrospinal fluid (CSF) from Listeria meningitis patients in vivo and in vitro. Additionally, interferon-γ could induce MiET formation in Listeria-infected microglia in vitro that was mediated by NOX, and there was a positive relationship between the elevated level of IFN-γ and eDNA and nucleosomes in the brain homogenates and CSF of Listeria meningitis model mice and in the CSF before treatment in clinical Listeria meningitis patients. Together, this is the first report of MiET formation, these findings pave the way for deeper exploration of the innate immune response to pathogens in CNS

    Electric-Field-Induced Connectivity Switching in Single-Molecule Junctions

    Get PDF
    Summary(#br)The manipulation of molecule-electrode interaction is essential for the fabrication of molecular devices and determines the connectivity from electrodes to molecular components. Although the connectivity of molecular devices could be controlled by molecular design to place anchor groups in different positions of molecule backbones, the reversible switching of such connectivities remains challenging. Here, we develop an electric-field-induced strategy to switch the connectivity of single-molecule junctions reversibly, leading to the manipulation of different connectivities in the same molecular backbone. Our results offer a new concept of single-molecule manipulation and provide a feasible strategy to regulate molecule-electrode interaction

    Electric-field-induced selective catalysis of single-molecule reaction

    Get PDF
    随着单分子电学检测技术的迅速发展,分子电子学的研究不再局限于分子电子学器件的构筑及其电学性质的测量,而且扩展到单分子尺度化学反应过程的探索。然而目前相关的研究仍然局限于理论计算方面,在单分子尺度上实时监测和调控化学反应的活性和选择性是化学领域的长期目标和挑战。针对这一挑战,洪文晶教授课题组与程俊教授课题组合作,自主研发了精密科学仪器,将单个有机分子定向连接在两个末端尺寸为原子级的电极之间,解决了化学反应中分子取向控制的问题.理论计算结果证实了定向电场可以有效地稳定化学反应的过渡态,从而降低反应能垒。该研究工作在化学化工学院洪文晶教授、程俊教授、能源材料化学协同创新中心(iChEM)刘俊扬副研究员的共同指导下完成,由硕士研究生黄晓艳、iChEM博士研究生唐淳、博士研究生李洁琼以及兰州大学的陈力川博士作为共同第一作者,化学化工学院师佳副教授、陈招斌高级工程师、夏海平教授和田中群教授,萨本栋微纳研究院杨扬副教授、环境与生态学院白敏冬教授以及兰州大学张浩力教授参与了研究工作的讨论并给予指导,博士后乐家波、博士研究生郑珏婷、张佩(已毕业)、李瑞豪、李晓慧也参与了研究工作。Oriented external electric fields (OEEFs) offer a unique chance to tune catalytic selectivity by orienting the alignment of the electric field along the axis of the activated bond for a specific chemical reaction; however, they remain a key experimental challenge. Here, we experimentally and theoretically investigated the OEEF-induced selective catalysis in a two-step cascade reaction of the Diels-Alder addition followed by an aromatization process. Characterized by the mechanically controllable break junction (MCBJ) technique in the nanogap and confirmed by nuclear magnetic resonance (NMR) in bottles, OEEFs are found to selectively catalyze the aromatization reaction by one order of magnitude owing to the alignment of the electric field on the reaction axis. Meanwhile, the Diels-Alder reaction remained unchanged since its reaction axis is orthogonal to the electric fields. This orientation-selective catalytic effect of OEEFs reveals that chemical reactions can be selectively manipulated through the elegant alignment between the electric fields and the reaction axis.This work was supported by the National Key R&D Program of China (2017YFA0204902), the National Natural Science Foundation of China (21722305, 21703188, 21673195, 21621091, 51733004, 51525303, and 91745103), the China Postdoctoral Science Foundation (2017M622060), and the Young Thousand Talents Project of China. 该工作得到国家自然科学基金委(21722305、21703188、21673195、51733004、51525303、91745103),国家重点研发计划课题(2017YFA0204902),中国博士后面上基金(2017M622060)的资助,以及固体表面物理化学国家重点实验室、醇醚酯化工清洁生产国家工程实验室、能源材料化学协同创新中心的支持

    A COVID-19 Risk Score Combining Chest CT Radiomics and Clinical Characteristics to Differentiate COVID-19 Pneumonia From Other Viral Pneumonias

    Get PDF
    With the continued transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) throughout the world, identification of highly suspected COVID-19 patients remains an urgent priority. In this study, we developed and validated COVID-19 risk scores to identify patients with COVID-19. In this study, for patient-wise analysis, three signatures, including the risk score using radiomic features only, the risk score using clinical factors only, and the risk score combining radiomic features and clinical variables, show an excellent performance in differentiating COVID-19 from other viral-induced pneumonias in the validation set. For lesion-wise analysis, the risk score using three radiomic features only also achieved an excellent AUC value. In contrast, the performance of 130 radiologists based on the chest CT images alone without the clinical characteristics included was moderate as compared to the risk scores developed. The risk scores depicting the correlation of CT radiomics and clinical factors with COVID-19 could be used to accurately identify patients with COVID-19, which would have clinically translatable diagnostic and therapeutic implications from a precision medicine perspective

    柠檬酸环氧反应性增容改性聚乳酸/淀粉复合材料的研究

    No full text
    Citric acid based epoxy was firstly used to modify the polylactic acid (PLA) /Starch composites by reactive extrusion. The static contact angle test and scanning electron microscope demonstrate that the citric acid based epoxy reacted with starch during the melt blending, resulting in the better compatibility of PLA/Starch composites. Moreover, the mechanical properties of PLA/starch composites including flexible strength and impact strength are all significantly improved by universal testing machine

    Crystallization Kinetics and Morphology of Biodegradable Poly(ethylene succinate)/Octavinyl-Polyhedral Oligomeric Silsesquioxanes Nanocomposites

    No full text
    One of the main drawbacks of biodegradable poly­(ethylene succinate) (PES) is its slow crystallization rate. We prepared three nanocomposite samples in the present work by incorporating different small amounts of octavinyl-polyhedral oligomeric silsesquioxanes (ovi-POSS) into the PES matrix. The morphology and dispersion of ovi-POSS were first studied with a scanning electron microscope in the PES matrix. The nanofiller showed a nice dispersion throughout the polymer matrix with a regular structure, indicating the crystalline feature. The influences of different amounts of ovi-POSS on the nonisothermal and isothermal crystallization behaviors, spherulitic morphologies, and crystal structures of the nanocomposites were extensively investigated with several techniques. Ovi-POSS obviously enhanced the crystallization behaviors of PES as an efficient nucleating agent in the nanocomposites; moreover, the nanocomposites and neat PES had the same crystal structures and crystallization mechanisms

    Preparation and characterization of thermoplastic starches and their blends with poly(lactic acid)

    No full text
    Two different thermoplastic starches (TPS), namely maleic anhydride grafted starch (MA-g-starch) and epoxidized cardanol grafted starch (Epicard-g-starch), were successfully prepared by chemical modification without the addition of any plasticizer. The structure and properties were characterized by nuclear magnetic resonance (NMR), X-ray diffraction (XRD), hot press testing, scanning electron microscopy (SEM) and contact angle meter, respectively. Results from XRD showed that the highly crystalline structure of native starch was destroyed after modification. Continuous phase was obtained from both of the chemically modified starches after hot pressing at 130 degrees C, indicating that they have good thermoplasticity. Subsequently, they were melt-blended with PLA. It was found that the Epicard-g-starch had a much finer dispersed phase size than MA-g-starch in PLA matrix due to its better hydrophobicity. As a result, the mechanical properties of PLA/Epicard-g-starch blend were superior to those of PLA/MA-g-starch blend. (C) 2015 Elsevier B.V. All rights reserved
    corecore