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SUMMARY 
The manipulation of molecule-electrode interaction is essential for the 
fabrication of molecular devices, and determine the connectivity from 
electrodes to molecular components. Although the connectivity of molecular 
devices could be controlled by molecular design to place anchor groups in 
different positions of molecule backbones, the reversible switching of such 
connectivities remains challenging. Here, we develop an electric-field-induced 
strategy to switch the connectivity of single-molecule junctions reversibly, 
leading to the manipulation of different connectivities in the same molecular 
backbone. Our results offer a new concept of single-molecule manipulation and 
provide a feasible strategy to regulate molecule-electrode interaction. 

 

INTRODUCTION 
The interaction between molecular components and electrodes is of fundamental 

importance to fabricate molecular devices (Hines et al., 2013, Moth-Poulsen and 

Bjørnholm, 2009, Ratner, 2013, Su et al., 2016, Xiang et al., 2016a). Pre-setting anchor 

groups (such as pyridine and thiol) in molecular backbones is one of the most typical 

strategies to manipulate the molecule-electrode interaction, which links the molecules to 

electrodes in designed connectivity (Leary et al., 2015). The connectivity of molecular 

devices not only determines the pathways of charge transport through molecule 

backbones but also the electronic properties of the molecule devices (Lambert, 2015, Liu 

et al., 2019). Such as the benzene in meta- and para-connectivity shows different types of 

quantum interference, which leads to significantly different conductance (Agraït et al., 

2003, Aradhya et al., 2012b, Arroyo et al., 2013, Bai et al., 2019, Ballmann et al., 2012, 

Carlotti et al., 2018, Darwish et al., 2012, Frisenda et al., 2016, Garner et al., 2018, Guedon 

et al., 2012, Li et al., 2017, Li et al., 2019, Liu et al., 2019, Mayor et al., 2003, Solomon et al., 

2010, Su et al., 2016, Tang et al., 2019, Thompson and Nijhuis, 2016, Xiang et al., 2016a, 

Yoshizawa et al., 2008). The connectivity of single-molecule junctions can also determine 

the coupling site from the electrode to the molecule component, which has been utilized 

to construct a molecular switch by mechanical control (Aradhya et al., 2012a, Meisner et 

al., 2012, Quek et al., 2009). Moreover, such connectivity can regulate the coupling 

between electrodes and functional units of molecular components, which is essential for 

the design of molecular devices (Chen et al., 2017, Mayor et al., 2003, Xiang et al., 2016b). 

Because of the importance of connectivity in molecule devices, intensive efforts have been 

paid to construct stable and specific connectivity, whereas the manipulation of such 

connectivity in the same molecule backbone remained technically challenging. However, 

the efforts to reversibly tune the connectivity in the same molecular backbone would 

arouse new strategy to regulate the molecule-electrode interaction, and lead to molecular 

devices with unique performances.  

Recently, external electric field (EEF) has been proved to be a powerful tool to alter charge 

state (Koren et al., 2016), rupture chemical bonds (Zhang et al., 2018), vary molecule 

conformations(Bi et al., 2018, Gerhard et al., 2017, Lörtscher et al., 2006, Meded et al., 

2009, Meng et al., 2019, Olavarria-Contreras et al., 2018), and even catalyze chemical 

reactions at the single-molecule scale (Aragonès et al., 2016, Ciampi et al., 2018, Huang et 

al., 2019, Shaik et al., 2016, Shaik et al., 2018, Wang et al., 2018). The interaction between 

molecular components and EEF is based on the dipole-dipole interaction. Thus the tuning 

of such interaction provides the opportunity to regulate the favorable connectivity of 



 

 

 

single-molecule junctions in a neat and reversible way. To achieve such a goal, we choose 

pyridine as the functional building block. Since pyridine can be protonated with 

significantly enhanced dipole moments (Figure 1B), which would prefer to reorient itself to 

counteract EEF, with the increasing trend to form an antiparallel arrangement when the 

strength of EEF increased (Figure 1C) (Brooke et al., 2018, Fujii et al., 2015, Li et al., 2016, 

Vergeer et al., 2006). Meanwhile, pyridine also has the binary interaction with electrodes 

by the ring coupling or the lone pair coordination (Aradhya et al., 2012a, Quek et al., 

2009), providing a potential anchor to form the in-backbone connectivity (Miguel et al., 

2015). Thus, the introduction of EEF into pyridine based molecular devices provides a 

promising platform towards the regulating of two possible connectivities in the same 

molecular skeletons. 

In this work, we find that the ring of pyridinium could interact with the gold electrode, so 

we place pyridine in the middle of the molecular skeletons to set the two possible 

connectivities: the end-to-end meta-connectivity, and the in-backbone para-connectivity 

(Figure 1A and 1C). We find that the formation of the two connectivities is controlled by 

protonation and the applied bias between two electrodes, suggesting that the interaction 

between dipole moments and the electric field is essential to tune the connectivities of 

single-molecule junctions. Moreover, the switching between meta- to para-connectivity is 

associated with the changing of transport distances from longer to shorter transmission 

pathways, which enlarge the conductance difference in two connectivity. Utilizing this 

strategy, we reversibly switch the connectivities in the same molecular skeleton, and 

provide a new concept to efficiently manipulate single-molecule junctions. 

RESULTS  
Single-molecule conductance measurement 

Protonated pyridinium M1-H was formed in-situ by adding trifluoroacetic acid (TFA) to the 

solution of M1 (Figure 2A), which is the neutral state of M1-H. The single-molecule 

conductances are characterized by mechanically controllable break junction (MCBJ) 

technique (Hong et al., 2012, Li et al., 2017) in the solvent mixture of 1,2,4-

trichlorobenzene (TCB)/ dichloromethane (DCM). As shown in the inset of Figure 2B, the 

conductances of single-molecule junctions were recorded during repeated connecting and 

breaking of two gold electrodes, leading to the individual traces of conductance (on the 

logarithmic scale) versus stretching distance (∆z). The one-dimensional (1D) conductance 

histograms of M1 (blue) and M1-H (red) are constructed from ~2000 of such traces. As 

shown in Figure 2B, the sharp peaks at G0 represents the formation of gold atomic point 

contact (Yanson et al., 1998), and the broader peaks are associated to the conductance of 

corresponding single-molecule junctions, while the control experiments in the blank 

solvent did not show such signal (Supporting Information, Figure S12). We find that M1 

shows a mono conductance peak, with the most probable conductance at 10–5.8 
G0 (Figure 

2B), which is consistent with the previous result with the presence of destructive quantum 

interference (Liu et al., 2017). Differently, M1-H shows two distinct conductance peaks (10–

3.5 and 10–5.4 
G0), suggesting the formation of two types of junction geometries, with about 

two orders of magnitude conductance difference.  

The two-dimensional (2D) conductance-displacement histogram of M1-H (Figure 2E) 

demonstrates that the high-conductance junctions have about 0.35 nm stretching 

distance, which is significantly shorter than the low-conductance junctions of M1 with a 

1.04 nm stretching distance around 10–6.0 G0 (Figure 2C). The significantly shorter 

stretching distance for the high-conductance junction of M1-H is associated to the 

junction geometry formed between one of the –SAc groups and the middle pyridinium 

ring (Figure 1B), which was confirmed by a series of reference experiments (Supporting 

Information, Section 3, Figure S16 and S17). Although pyridine is not a good candidate to 

form the in-backbone connectivity (Liu et al., 2017, Miguel et al., 2015), the in-situ formed 

pyridinium is feasible to form the in-backbone connectivity. We think such feasibility is 

associated with the significantly enhanced dipole moments in pyridiniums (Supporting 

Information Figure S25A), which would have a stronger interaction with the electric field 

applied by the two electrodes, playing an essential role in favoring the formation of the 

high-conductance junctions in M1-H. Meanwhile, the features of single-molecule 

conductance between M1 and M1-H could be reversible emerged when acid or base added 

(Figure S20). 

The strategy to tune the connectivity of single-molecule junctions offers the chance to 

further enhance the conductance difference between the low- and high-conductance 



 

 

 

junctions, by enlarging the difference of charge transport distances in between (Cheng et 

al., 2011, Choi et al., 2008, Dell et al., 2015). Towards this goal, we designed molecules 

M1L-H formed by the protonation of M1L, leading to a 1.3 nm difference between two 

possible connectivities (Figure 2A), which is almost two-fold than that in M1-H 

(Supporting Information Figure S23). As shown in Figure 2D, M1L shows a mono 

conductance peak at 10–7.1 G0, attributing to the end-to-end meta-connectivity 

(Supporting Information Figure S22). The conductance peak for the protonated M1L-H 

locates at 10–4.5 G0, attributing to the high-conductance junctions, while the low-

conductance junctions of M1L-H have the conductance below detecting limit, suggesting 

that the conductance difference between the two connectivities in M1L-H is increasing to 

~400 times. The results suggest that the manipulation of the difference of charge 

transport distances would lead to larger conductance difference in the two connectivity. 

More importantly, the conductance difference can be fine-tuned and further increased by 

this strategy, but the quantitative investigation of a molecular system with even more 

substantial conductance difference is restricted by the detecting limit of single-molecule 

conductance measurement. 

Revealing the role of the electric field 

To understand the interaction between the molecular component and the electric field, 

we varied the bias voltages applied to the molecular junctions in the single-molecule 

conductance measurement. On account of the detecting limit, we focused the 

investigation on M1-H. Firstly, by increasing the bias from 0.05 to 0.40 V for the MCBJ 

measurement of M1-H in a nonpolar solvent (TCB/DCM), as shown in Figure 3A, we find 

that the formation of low-conductance junctions in M1-H is gradually suppressed and 

almost completely suppressed in the bias of 0.40 V. Meanwhile, the formation of high-

conductance junctions in M1-H becomes more and more favorable with the increasing of 

bias. We quantitatively characterize the junction formation probability for both the low- 

and high-conductance junctions of M1-H in different bias (Supporting Information Figure 

S18), as shown in Figure 3B, we find that the low-conductance junctions are dominant in 

0.05 V bias, while the high-conductance junctions become dominant when the bias is 

higher than 0.20 V. From the overall trend, the junction formation probability for the high-

conductance junctions of M1-H has a positive correlation to the bias, which has a negative 

correlation to the low-conductance junctions of M1-H. Moreover, when the bias is 

switched between 0.10 and 0.40 V, as shown in Figure 3C, we find the high- and low-

conductance junctions of M1-H become dominated alternately in a reversible way 

(Supporting Information Figure S19). 

To further reveal the role of the electric field, we use a polar solvent, propylene carbonate 

(PC), to characterize the single-molecule conductance of M1-H. As shown in Figure 3D, the 

high-conductance junctions of M1-H are significantly suppressed even in higher bias. We 

also find that such bias-dependent junction formation probability of M1-H observed in 

nonpolar solvent also vanished in the polar solvent. In consideration of the changing of the 

equilibrium between M1 and M1-H when we use PC, a polar solvent showing weak 

basicity, we also characterized the response of the methylated pyridinium of M1 to electric 

field (Supporting Information Figure S17). We also find that the bias-dependent 

suppression of the low conductance junctions in non-polar solvent (Figure S17D) also 

vanish in polar solvent (Figure S17E), suggesting the importance of the dielectric constant 

in tuning such electric-field-induced connectivity switching. Since the polar solvent results 

in the attenuation of the electric field,(Bermudez et al., 2000) the absence of high-

conductance junctions in M1-H suggests the importance of the electric field to regulate 

the connectivities of single-molecule junctions. 

Theoretical calculations 

To investigate the connectivity switching mechanism in M1-H, we carried density 

functional theory (DFT) calculation to study the different binding geometries between M1 

and M1-H. We find that the dipole moment of M1-H is eight times larger than M1 (Figure 

4A), attributing to the net positive charge in M1-H (Supporting Information Figure S25). 

The models with one of the sulfur binding to the gold electrode are used for analyzing. The 

effect of EEF was evaluated by the total energy changing versus the strength of EEF and 

the relative orientation between EEF and molecules (Figure 4A dash line). As shown in 

Figure 4B, fixing the EEF paralleled to the dashed line (θ = 0), with the strength of EEF 

changing from –0.006 to 0.006 a.u. (–3.1 to 3.1 V/nm), the total energy of M1-H varies 

about 120 kcal mol–1, while such an effect for M1 is negligible. Upon changing θ from –90o 



 

 

 

to 90o with fixed EEF strength (+ 0.002 a.u.), as shown in Figure 4C, the most favorable 

molecular orientation for M1-H is the in-backbone connectivity (θ = 0) with a parallel 

orientation to EEF, while M1 does not show explicit dependency to θ. The calculation 

result is consistent with the bias-dependent junction formation probability, in which the 

in-backbone connectivity of M1-H becomes more and more dominant in higher bias 

(Figure 3A). Besides the difference of dipole moments between M1 and M1-H, the 

electrostatic potential distributions of M1-H shows significantly high positive charge 

distribution around the pyridinium ring (Supporting Information Figure S25B), so that the 

electrostatic attraction between the electrode and the pyridinium ring of M1-H would be 

another factor in facilitating the formation of high-conductance junctions in M1-H. 

We also find that the formation of pyridinium has a distinct effect on their frontier orbitals. 

As shown in Figure 4D, the LUMO of M1-H is localized at the pyridinium ring, which is 

distinct to M1 with its LUMO delocalized around the molecular skeleton. The localized 

LUMO of M1-H weakens the back donating bonding from gold to sulfur, leading to weaker 

Au-S bond, which is confirmed by DFT calculation (Figure 4E) and surface-enhanced 

Raman spectra that the vibration mode of Au-S was red-shifted from 249 cm–1 in M1 to 

234 cm–1 in M1-H (Supporting Information Figure S21) (Kocharova et al., 2007). The 

weaker Au-S bond in M1-H reduces the competition to form the end-to-end connectivity 

between two sulfur, and makes the formation of the in-backbone connectivity more 

favorable. Thus, we think both the electric field and the weakened Au-S bonds contribute 

to the formation of high-conductance junctions in M1-H. 

Discussion  

In conclusion, we have developed an electric-field-induced strategy for reversible 

switching the connectivities of single-molecule junctions. Through the switching from 

longer meta-connectivity to shorter para-connectivity, we manipulate the charge-

transport distances, which significantly enhance the conductance difference between two 

connectivities. The mechanism of the switching is further investigated by experiments and 

DFT calculation, revealing that the protonation-enhanced dipole moments have 

significant interaction with the electric field, which favors the formation of in-backbone 

para-connectivity. Our studies suggest that the interplay between the dipole moment of 

molecules and EEF will lead to a reversible connectivity switching strategy, which would 

provide a new concept to manipulate the molecule-electrode interaction and be promising 

for constructing new conceptual molecular devices. 

Limitations of the Study 

The switching from the end-to-end connection to the in-backbone connection of M1-H 

may also lead to the switching of quantum interference in the charge transport through 

the single-molecule junctions. For instance, the changes from meta-connection to para-

connection may switch the patterns of quantum interference from destructive to 

constructive states, and also offer a new opportunity for interference-based molecular 

devices. However, the understanding of quantum interference patterns needs further 

investigations, which are challenging to be accomplished at the current stage. 

Methods 
All methods can be found in the accompanying Transparent Methods supplemental file. 

 
SUPPLEMENTAL INFORMATION 

Supplemental Information includes Supplemental Experimental Procedures and 27 figures 

can be found with this article online at http:// 
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Figure 1. A single-molecule device based on connectivity switching 

(A) Schematics of single-molecule switch modulated by connectivity switching. The meta-

connectivity is associated to a longer transmission pathway with low conductance, while the 

para-connectivity is associated to a shorter transmission pathway with high conductance. (B) 

The protonation of pyridine leads to a significantly enhanced dipole moment in pyridinium. 

(C) Schematics of electric-filed-induced connectivity switching between meta- and para-

connectivity. The para-connectivity is expected to be favorable when large EEF applied, 

owing to the counteracting of dipole moments with EEF. See also Figure S11, S25, and S27. 

 
Figure 2. Single-molecule conductance measurement 

(A) Molecular structures of M1-H and M1L-H, which are formed by the protonation of the 

neutral state M1 and M1L by TFA. The calculated junction lengths for the meta- and para-

connectivity are shown beside. (B) All data-point one-dimensional conductance histograms 

constructed from two thousand MCBJ traces of M1 and M1-H. The typical individual traces of 

M1 and M1-H are shown in the inset. The high- and low-conductance junctions are labeled by 

‘H’ and ‘L’ in the blue and red region, respectively. Two-dimensional conductance histograms 

of M1 (C) and M1-H (E) with stretching distance ∆z distributions shown inset. The blue and gray 

histograms represent the stretching distances of high- and low-conductance junctions of M1-

H, respectively. (D) All data-point one-dimensional conductance histograms constructed from 

about one thousand MCBJ traces of M1L and M1L-H, respectively. The above measurements 

were performed in the solvent mixture of TCB/DCM (v/v, 4/1) at room temperature with 0.10 V 

bias applied. See also Figure S1-17, S22, and S23. 

 
Figure 3. Bias-dependent junction formation probability 

(A) One-dimensional conductance histograms of M1-H with a different bias applied, in the 

solvent TCB/DCM mixture (v/v, 4/1). (B) The junction formation probability of M1-H for the 

corresponding low- and high-conductance junctions respectively, the blue and red dashed 

lines are plotted by the linear fitting. (C) The junction formation probability for the low- and 

high-conductance junctions of M1-H with 0.10 and 0.40 V bias applied alternately. (D) One-

dimensional conductance histograms of M1-H with a different bias applied, in the solvent of 

propylene carbonate (PC). The above measurements were performed at room temperature.  

See also Figure S17, S18, S19, S21, S24, and S26. 

 
 

Figure 4. Theoretical calculation 

(A) The strength and direction of dipole moments for M1 and M1-H were shown by the red 

and blue arrows nearby, the angle between molecule orientation (dash line) and applied 

electric field Fz was defined as θ. Symbol D represents Debye, the unit of dipole moments. (B) 

The Plots of total energy difference ∆E (EFz - EFz = 0) versus the applied electric field when θ = 0. 
(C), Plots of total energy difference ∆E (Eθ - Eθ = 0) versus θ, with electric field Fz = + 0.002 a.u. 

applied. (D) The orbital isosurfaces of LUMOs of M1 and the cation of M1-H. (E) The Au-S 

covalent bonds formation energy of M1 and M1-H. See also Figure S21 and S24. 

 



Highlights 

� A strategy to in-situ switch the connectivity of single-molecule junctions  

� A concept to manipulate the molecule-electrode interaction 

� A molecular switch triggered by the varying of electric filed 

� Experiments were combined with calculations to probe the switching mechanism 
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