10 research outputs found

    Aerodynamic design and analysis of small horizontal axis wind turbine blades

    Get PDF
    The exploitation of small horizontal axis wind turbines provides a clean, prospective and viable option for energy supply. Although great progress has been achieved in the wind energy sector, there is still potential space to reduce the cost and improve the performance of small wind turbines. An enhanced understanding of how small wind turbines interact with the wind turns out to be essential. This work investigates the aerodynamic design and analysis of small horizontal axis wind turbine blades via the blade element momentum (BEM) based approach and the computational fluid dynamics (CFD) based approach. From this research, it is possible to draw a series of detailed guidelines on small wind turbine blade design and analysis. The research also provides a platform for further comprehensive study using these two approaches. The wake induction corrections and stall corrections of the BEM method were examined through a case study of the NREL/NASA Phase VI wind turbine. A hybrid stall correction model was proposed to analyse wind turbine power performance. The proposed model shows improvement in power prediction for the validation case, compared with the existing stall correction models. The effects of the key rotor parameters of a small wind turbine as well as the blade chord and twist angle distributions on power performance were investigated through two typical wind turbines, i.e. a fixed-pitch variable-speed (FPVS) wind turbine and a fixed-pitch fixed-speed (FPFS) wind turbine. An engineering blade design and analysis code was developed in MATLAB to accommodate aerodynamic design and analysis of the blades. The linearisation for radial profiles of blade chord and twist angle for the FPFS wind turbine blade design was discussed. Results show that, the proposed linearisation approach leads to reduced manufacturing cost and higher annual energy production (AEP), with minimal effects on the low wind speed performance. Comparative studies of mesh and turbulence models in 2D and 3D CFD modelling were conducted. The CFD predicted lift and drag coefficients of the airfoil S809 were compared with wind tunnel test data and the 3D CFD modelling method of the NREL/NASA Phase VI wind turbine were validated against measurements. Airfoil aerodynamic characterisation and wind turbine power performance as well as 3D flow details were studied. The detailed flow characteristics from the CFD modelling are quantitatively comparable to the measurements, such as blade surface pressure distribution and integrated forces and moments. It is confirmed that the CFD approach is able to provide a more detailed qualitative and quantitative analysis for wind turbine airfoils and rotors. With more advanced turbulence model and more powerful computing capability, it is prospective to improve the BEM method considering 3D flow effects

    Blade design optimisation for fixed-pitch fixed-speed wind turbines

    Get PDF
    Fixed-pitch fixed-speed (FPFS) wind turbines have some distinct advantages over other topologies for small wind turbines, particularly for low wind speed sites. The blade design of FPFS wind turbines is fundamentally different to fixed-pitch variable-speed wind turbine blade design. Theoretically, it is difficult to obtain a global mathematical solution for the blade design optimisation. Through case studies of a given baseline wind turbine and its blade airfoil, this paper aims to demonstrate a practical method for optimum blade design of FPFS small wind turbines. The optimum blade design is based on the aerodynamic characteristics of the airfoil, that is, the lift and drag coefficients, and the annual mean wind speed. The design parameters for the blade optimisation include design wind speed, design tip speed ratio, and design attack angle. A series of design case studies using various design parameters are investigated for the wind turbine blade design. The design outcomes are analyzed and compared to each other against power performance of the rotor and annual energy production. The design outcomes from the limited design cases demonstrate clearly which blade design provides the best performance. This approach can be used for any practice of FPFS wind turbine blade design and refurbishment

    FEM-DEM coupling simulations of the tool wear characteristics in prestressed machining superalloy

    No full text
    Due to the complicated contact loading at the tool-chip interface, ceramic tool wear in prestressed machining superalloy is rare difficult to evaluate only by experimental approaches. This study aims to develop a methodology to predict the tool wear evolution by using combined FEM and DEM numerical simulations. Firstly, a finite element model for prestressed cutting is established, subsequently a discrete element model to describe the tool-chip behaviour is established based on the obtained boundary conditions by FEM simulations, finally, simulated results are experimentally validated. The predicted tool wear results show nice agreement with experiments, the simulation indicates that, within a certain range, higher cutting speed effectively results in slighter wear of Sialon ceramic tools, and deeper depth of cut leads to more serious tool wear

    FEM-DEM coupling simulations of the tool wear characteristics in prestressed machining superalloy

    No full text
    Due to the complicated contact loading at the tool-chip interface, ceramic tool wear in prestressed machining superalloy is rare difficult to evaluate only by experimental approaches. This study aims to develop a methodology to predict the tool wear evolution by using combined FEM and DEM numerical simulations. Firstly, a finite element model for prestressed cutting is established, subsequently a discrete element model to describe the tool-chip behaviour is established based on the obtained boundary conditions by FEM simulations, finally, simulated results are experimentally validated. The predicted tool wear results show nice agreement with experiments, the simulation indicates that, within a certain range, higher cutting speed effectively results in slighter wear of Sialon ceramic tools, and deeper depth of cut leads to more serious tool wear

    A direct approach of design optimization for small horizontal axis wind turbine blades

    Get PDF
    The performance of a wind turbine rotor depends on the wind characteristics of the site and the aerodynamic shape of the blades. The blade geometry determines the torque and the power generated by the rotor. From aerodynamic point of view, an economic and efficient blade design is attained by the maximization of rotor power coefficient. For small wind turbine blade design, there are some factors different from large blade. Such as, the small ones experience much lower Reynolds number flow than the large ones, thus large wind turbine airfoils may perform very poorly in small applications. The small turbines are self-started at lower wind speed, thus the hub and tip parts are vital for the starting-up torque which should be able to conquer the resistance of the generator and the mechanical system. This paper presents a direct method for small wind turbine blade design and optimization. A unique aerodynamic mathematical model was developed to obtain the optimal blade chord and twist angle distributions along the blade span. The airfoil profile analysis was integrated in this approach. The Reynolds number effects, tip and hub effects, and drag effects were all considered in the design optimization. The optimal chords and twist angles were provided with series of splines and points and three-dimensional blade models. This approach integrates blade design and airfoil analysis process, and enables seamless link with computational fluid dynamics analysis and CNC manufacturing

    Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage

    No full text
    The excessive porous space in carbon anodes for lithium-ion batteries has to be utilized for high volumetric performance. Here the authors show an adaptable sulfur template strategy to yield graphene-caged noncarbon materials with a precisely controlled amount of void, enabling ultrahigh volumetric lithium storage

    Pyropia yezoensis genome reveals diverse mechanisms of carbon acquisition in the intertidal environment

    No full text
    The nori producing seaweed Pyropia yezoensis has heteromorphic generations that occupy distinct habitats. Here, via genome assembly, transcriptome analysis, and 13 C isotope labeling, the authors show the interplay between inorganic carbon availability and life cycle evolution in the intertidal environment
    corecore