19 research outputs found

    A Co9S8 microsphere and N-doped carbon nanotube composite host material for lithium-sulfur batteries

    Get PDF
    Lithium-sulfur batteries have emerged as extraordinarily favorable energy storage devices due to their high specific capacity and energy density, safety and low cost. Unfortunately, the wide applications of lithium-sulfur batteries are hampered by several issues, such as the low electronic conductivity and slow redox kinetics, serious volumetric expansion and polysulfide “shuttle effect”. To overcome these issues, in our work, we design and synthesize a composite sulfur host material of Co9S8 microspheres and N-doped carbon nanotubes, where the metallic sulfide Co9S8 with a good conductivity enables the immobilization of the polar lithium polysulfides owing to the strong polar chemisorptive capability, and the one dimensional N-doped carbon nanotubes can provide channels for fast electron and lithium-ion transport. As the lithium polysulfides are well confined, and the redox conversions are promoted, the Co9S8@N-CNTs/S-based lithium-sulfur battery possesses a superior energy storage performance, exhibiting a large specific capacity of 1233 mAh g-1 at 0.1 C and an outstanding cyclic performance, with a low decay of 0.045% per cycle and a Coulombic efficiency of more than 99% after 1000 cycles

    A novel “holey-LFP / graphene / holey-LFP” sandwich nanostructure with significantly improved rate capability for lithium storage

    Get PDF
    The development of high-performance and new-structure electrode materials is vital for the wide application of rechargeable lithium batteries in electric vehicles. In this work, we design a special composite electrode structure with the macroporous three-dimensional graphene areogel framework supporting mesoporous LiFePO4 nanoplate. It is realized using a simple sol-gel deposition method. The highly conductivity graphene nanosheets assemble into an interconnected three-dimensional macroporous areogel framework, while LiFePO4 grows along the graphene nanosheets and generates a mesoporous nanoplate structure. In comparison with LiFePO4, this unique sandwich nanostructure offers a greatly increased electronic conductivity thanks to the framework of graphene nanosheets. Also, the bimodal porous structure of the composite remarkably increases the interface between the electrode/electrolyte and facilitates the transport of Li+ throughout the electrode, enabling the superior specific capacity, rate characteristic and cyclic retention

    Interactive dynamic influence diagrams for relational agents

    No full text

    Self-Improving Generative Adversarial Reinforcement Learning

    Get PDF
    The lack of data efficiency and stability is one of the main challenges in end-to-end model free reinforcement learning (RL) methods. Recent researches solve the problem resort to supervised learning methods by utilizing human expert demonstrations, e.g. imitation learning. In this paper we present a novel framework which builds a self-improving process upon a policy improvement operator, which is used as a black box such that it has multiple implementation options for various applications. An agent is trained to iteratively imitate behaviors that are generated by the operator. Hence the agent can learn by itself without domain knowledge from human. We employ generative adversarial networks (GAN) to implement the imitation module in the new framework. We evaluate the framework performance over multiple application domains and provide comparison results in support

    A comparative study on silicon-based negatrode materials in metallic cavity electrode and button half cell — Uncovering unseen microscopic and dynamic features

    No full text
    The electrochemical characterization of lithium storage materials using the button cell is commonplace, but it is also tedious and time-consuming. Also, the results are often affected by the use of the binders and separator membranes, and by the electrode forming and cell assembly methods. To study the changes in materials before and after dis-/charging, one has to break up the button cell and disturb the packing structure of electrode. In this work, the metallic cavity electrode made of copper (Cu-MCE) was used to study silicon-based negative electrode (negatrode) materials during electrochemical de-/lithiation. The initial apparent reaction area (i.e. the contacting area between the Cu substrate and the active materials, 0.785 mm2) of the Cu-MCE was much smaller than that of the half-button cell (153.86 mm2), reducing significantly the overall current and hence polarization in the Cu-MCE. Powders of commercial silicon and phosphorus-doped silicon (P-doped Si) were tested in the Cu-MCE and a conventional button cell. Cyclic voltammograms (CVs) recorded using the Cu-MCE showed full activation in the first cycle, unlike the button cell whose CVs expanded continuously beyond 5 cycles. Current peaks on the CVs of the Cu-MCE agreed with the expected redox reactions but were more pronounced. The subtle differences between P-doped Si and pure Si could also be revealed by the Cu-MCE with the current peaks becoming more obvious, apparently due to modification in material structures and improved ion transport dynamics. The peak currents on the CVs of the Cu-MCE were plotted against the square root of scan rate (v1/2), showing non-linearity for the two oxidation peaks at 0.35 and 0.54 V, indicating both diffusion and surface of the delithiation processes. Linear plots were obtained for the two reduction peaks at 0.165 and 0.245 V with comparable slopes (−0.024 and 0.029 mA mV−1/2 s1/2), confirming diffusion control with insignificant polarization. However, similar analyses of the button cell revealed diffusion control in both oxidation and reduction, indicating slower dynamics with large polarization to delithiation. More importantly, the Cu-MCE can be inspected directly after dis-/charging without any disturbance, and provides unseen variation in the packing structure, particle morphology, and elemental information of the active materials. It is hoped that the higher accuracy, better details, and greater efficiency offered by the Cu-MCE for studying the intrinsic electrode reaction characteristics of Si-based electrode materials can be extended to other powdery materials for charge storage

    FEC Additive for Improved SEI Film and Electrochemical Performance of the Lithium Primary Battery

    No full text
    The solid electrolyte interphase (SEI) film plays a significant role in the capacity and storage performance of lithium primary batteries. The electrolyte additives are essential in controlling the morphology, composition and structure of the SEI film. Herein, fluoroethylene carbonate (FEC) is chosen as the additive, its effects on the lithium primary battery performance are investigated, and the relevant formation mechanism of SEI film is analyzed. By comparing the electrochemical performance of the Li/AlF3 primary batteries and the microstructure of the Li anode surface under different conditions, the evolution model of the SEI film is established. The FEC additive can decrease the electrolyte decomposition and protect the lithium metal anode effectively. When an optimal 5% FEC is added, the discharge specific capacity of the Li/AlF3 primary battery is 212.8 mAh g−1, and the discharge specific capacities are respectively 205.7 and 122.3 mAh g−1 after storage for 7 days at room temperature and 55 °C. Compared to primary electrolytes, the charge transfer resistance of the Li/AlF3 batteries with FEC additive decreases, indicating that FEC is a promising electrolyte additive to effectively improve the SEI film, increase discharge-specific capacities and promote charge transfer of the lithium primary batteries
    corecore