380 research outputs found

    Three-dimensional brain reconstruction of in vivo electrode tracks for neuroscience and neural prosthetic applications

    Get PDF
    The brain is a densely interconnected network that relies on populations of neurons within and across multiple nuclei to code for features leading to perception and action. However, the neurophysiology field is still dominated by the characterization of individual neurons, rather than simultaneous recordings across multiple regions, without consistent spatial reconstruction of their locations for comparisons across studies. There are sophisticated histological and imaging techniques for performing brain reconstructions. However, what is needed is a method that is relatively easy and inexpensive to implement in a typical neurophysiology lab and provides consistent identification of electrode locations to make it widely used for pooling data across studies and research groups. This paper presents our initial development of such an approach for reconstructing electrode tracks and site locations within the guinea pig inferior colliculus (IC) to identify its functional organization for frequency coding relevant for a new auditory midbrain implant (AMI). Encouragingly, the spatial error associated with different individuals reconstructing electrode tracks for the same midbrain was less than 65 μm, corresponding to an error of ~1.5% relative to the entire IC structure (~4–5 mm diameter sphere). Furthermore, the reconstructed frequency laminae of the IC were consistently aligned across three sampled midbrains, demonstrating the ability to use our method to combine location data across animals. Hopefully, through further improvements in our reconstruction method, it can be used as a standard protocol across neurophysiology labs to characterize neural data not only within the IC but also within other brain regions to help bridge the gap between cellular activity and network function. Clinically, correlating function with location within and across multiple brain regions can guide optimal placement of electrodes for the growing field of neural prosthetics

    Adiabatic quantum pump in the presence of external ac voltages

    Full text link
    We investigate a quantum pump which in addition to its dynamic pump parameters is subject to oscillating external potentials applied to the contacts of the sample. Of interest is the rectification of the ac currents flowing through the mesoscopic scatterer and their interplay with the quantum pump effect. We calculate the adiabatic dc current arising under the simultaneous action of both the quantum pump effect and classical rectification. In addition to two known terms we find a third novel contribution which arises from the interference of the ac currents generated by the external potentials and the ac currents generated by the pump. The interference contribution renormalizes both the quantum pump effect and the ac rectification effect. Analysis of this interference effect requires a calculation of the Floquet scattering matrix beyond the adiabatic approximation based on the frozen scattering matrix alone. The results permit us to find the instantaneous current. In addition to the current generated by the oscillating potentials, and the ac current due to the variation of the charge of the frozen scatterer, there is a third contribution which represents the ac currents generated by an oscillating scatterer. We argue that the resulting pump effect can be viewed as a quantum rectification of the instantaneous ac currents generated by the oscillating scatterer. These instantaneous currents are an intrinsic property of a nonstationary scattering process.Comment: 11 pages, 1 figur

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Quantum dynamics in strong fluctuating fields

    Full text link
    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. Herein, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis the influence of nonequilibrium fluctuations and periodic electrical fields on quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres

    Enhanced upper genital tract pathologies by blocking Tim-3 and PD-L1 signaling pathways in mice intravaginally infected with Chlamydia muridarum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although Tim-3 & PD-L1 signaling pathways play important roles in negatively regulating immune responses, their roles in chlamydial infection have not been evaluated.</p> <p>Methods</p> <p>Neutralization antibodies targeting Tim-3 and PD-L1 were used to treat mice. Following an intravaginal infection with <it>C. muridarum </it>organisms, mice with or without the dual antibody treatment were compared for live chlamydial organism shedding from the lower genital tract and inflammatory pathology in the upper genital tract.</p> <p>Results</p> <p>Mice treated with anti-Tim-3 and anti-PD-L1 antibodies displayed a time course of live organism shedding similar to that of mice treated with equivalent amounts of isotype-matched IgG molecules. The combined antibody blocking failed to alter either the lower genital tract cytokine or systemic humoral and cellular adaptive responses to <it>C. muridarum </it>infection. However, the antibody blocking significantly enhanced <it>C. muridarum</it>-induced pathologies in the upper genital tract, including more significant hydrosalpinx and inflammatory infiltration in uterine horn and oviduct tissues.</p> <p>Conclusions</p> <p>The Tim-3 and PD-L1-mediated signaling can significantly reduce pathologies in the upper genital tract without suppressing immunity against chlamydial infection, suggesting that Tim-3 and PD-L1-mediated negative regulation may be manipulated to attenuate tubal pathologies in women persistently infected with <it>C. trachomatis </it>organisms.</p

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
    corecore