199 research outputs found

    Competency Development in University Business Students: A Multiperspective Analysis

    Get PDF
    University business schools work to produce graduates who are knowledgeable in each of the business disciplines (e.g., accounting, management) as well as subject matter related to their chosen major or concentration area. B-schools also seek to develop some of the key professional competencies that are needed by individuals working in business. There are other competencies that may be important in business but are either impossible or impractical to develop in a university environment, and graduates must develop those competencies after beginning their business careers. We investigated three research questions relating to the importance, trainability, and development of 22 professional competencies in business school students. 1. Do students, faculty members, and HR professionals agree on the relative importance of the competencies? 2. To what degree do faculty members and HR professionals believe each of the competencies is trainable in a college setting? 3. To what extent do students and faculty members believe that students currently receive learning, practice, and feedback to develop the competencies while in college

    Mechanism of cell death induced by spermine and amine oxidase in mouse melanoma cells

    Get PDF
    Polyamines such as spermine, spermidine and putrescine are necessary for cell proliferation and are detected at higher concentrations in most tumor tissues, compared to normal tissues. The amine oxidase enzymes can generate cytotoxic products such as hydrogen peroxide and aldehydes from these polyamines. This study investigates the mechanisms of cell death in B16-F0 mouse melanoma tumor cells exposed to bovine serum amine oxidase and exogenous spermine. The bovine serum amine oxidase/spermine enzymatic system induced inhibition of cell proliferation in B16-F0 melanoma cells and cell death by both apoptotic and necrotic processes. Bovine serum amine oxidase or spermine, alone, did not induce cytotoxicity or cell death by apoptosis, indicating that the enzymatic reaction products were responsible. Catalase and NAD-dependent aldehyde dehydrogenase, inhibitors of hydrogen peroxide and aldehydes, respectively, decreased cell death by apoptosis and necrosis. This further confirms that the cytotoxic products are responsible for causing cell death. Use of inhibitors of different caspases showed that melanoma cells were sensitive to processes involving caspase-3 and -9, but were insensitive to caspase-6. Bovine serum amine oxidase in the presence of spermine could be useful as a promising new tool for anticancer treatment by the selective generation of toxic compounds from polyamines in tumors

    Ventricular tachycardia in infants with structurally normal heart: A benign disorder

    Get PDF
    We evaluated the presentation, treatment, and outcome of infants who present with ventricular tachycardia in the first year of life. Seventy-six infants were admitted to our institution with a diagnosis of ventricular tachycardia between January, 1987 and May, 2006. Forty-five infants were excluded from the study because of additional confounding diagnoses including accelerated idioventricular rhythm, Wolff– Parkinson–White syndrome, supraventricular tachycardia with aberrancy, long QT syndrome, cardiac rhabdomyoma, myocarditis, congenital lesions, or incomplete data. The remaining 31 included infants who had a median age at presentation of 1 day, with a range from 1 to 255 days, and a mean ventricular tachycardia rate of 213 beats per minute, with a range from 171 to 280, at presentation. The infants were treated chronically with propranolol (38.7%), amiodarone (12.9%), mexiletine (3.2%), propranolol and mexiletine (9.7%), or propranolol and procainamide (6.5%). The median duration of treatment was 13 months, with a range from 3 to 105 months. Ventricular tachycardia resolved spontaneously in all infants. No patient died, or received catheter ablation or device therapy. Median age at last ventricular tachycardia was 59 days, with a range from 1 to 836 days. Mean follow-up was 45 months, with a range from 5 to 164 months, with a mean ventricular tachycardia-free period of 40 months. Infants with asymptomatic ventricular tachycardia, a structurally normal heart, and no additional electrophysiological diagnosis all had spontaneous resolution of tachycardia. Furthermore, log-rank analysis of the time to ventricular tachycardia resolution showed no difference between children who received chronic outpatient anti-arrhythmic treatment and those who had no such therapy. While indications for therapy cannot be determined from this study, lack of symptoms or myocardial dysfunction suggests that therapy may not be necessary

    Pediatric pacemaker infections: Twenty years of experience

    Get PDF
    AbstractObjective: We sought to evaluate possible predictors of early and late pacemaker infections in children. Methods: A review was performed of all pacemakers implanted in children at The Children's Hospital of Philadelphia between 1982 and 2001. Infections were classified as superficial cellulitus, deep pacemaker pocket infection necessitating removal, or positive blood culture without an identifiable source. Results: A total of 385 pacemakers (224 epicardial and 161 endocardial) were implanted in 267 patients at 8.4 ± 6.2 years. All 2141 outpatient visits were reviewed (median follow-up, 29.4 months; range, 2-232 months). There were 30 (7.8%) pacemaker infections: 19 (4.9%) superficial infections; 9 (2.3%) pocket infections; and 2 (0.5%) isolated positive blood cultures. All superficial infections resolved with intravenous antibiotics. The median time from implantation to infection was 16 days (range, 2 days-5 years). Only 1 deep infection occurred after primary pacemaker implantation. Six patients with deep infections were pacemaker dependent and were successfully managed with intravenous antibiotics, followed by lead-generator removal and implantation of a new pacemaker in a remote location. In univariate analyses trisomy 21 (relative risk, 3.9; P <.01), pacemaker revisions (relative risk, 2.5; P <.01), and single-chamber devices (relative risk, 2.4; P <.05) were identified as predictors of infection. However, in multivariate analyses only trisomy 21 and pacemaker revisions were predictors. Conclusions: The incidences of superficial and deep pacemaker infections were 4.9% and 2.3%, respectively. Trisomy 21 and pacemaker revisions were significant risk factors in the development of infection after pacemaker implantation. For primary pacemaker implantation, the risk of infection requiring system removal is low (0.3%).J Thorac Cardiovasc Surg 2002;124:821-

    Identification of Active Sites for Oxygen Reduction Reaction on Nitrogen- and Sulfur-Codoped Carbon Catalysts

    Get PDF
    This research was financially supported by ERA.Net RUS Plus funding mechanism (Project HeDoCat) and by the European Regional Development Fund project TK134.Nitrogen- and sulfur-codoped carbon catalysts were prepared as electrocatalytic materials for the oxygen reduction reaction (ORR). Herein, we propose a novel and effective one-pot synthetic approach to prepare a NS-doped carbon catalyst by using the mixture of graphene oxide and multi-walled carbon nanotubes as a carbon support. Successful NS-doping of carbon and formation of the catalytically active sites were confirmed by X-ray photoelectron spectroscopy and with energy dispersion spectroscopy. The ORR activity of NS-codoped carbon was investigated by using a rotating disc electrode method. The NS-doped carbon shows superior ORR performance in alkaline media, and the electrocatalytic mechanism for the reduction of oxygen was well explained by density functional theory calculations of graphene sheets.ERA.Net RUS Plus Project HeDoCat; ERDF TK134; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Intestinal intraepithelial lymphocyte activation promotes innate antiviral resistance.

    Get PDF
    Unrelenting environmental challenges to the gut epithelium place particular demands on the local immune system. In this context, intestinal intraepithelial lymphocytes (IEL) compose a large, highly conserved T cell compartment, hypothesized to provide a first line of defence via cytolysis of dysregulated intestinal epithelial cells (IEC) and cytokine-mediated re-growth of healthy IEC. Here we show that one of the most conspicuous impacts of activated IEL on IEC is the functional upregulation of antiviral interferon (IFN)-responsive genes, mediated by the collective actions of IFNs with other cytokines. Indeed, IEL activation in vivo rapidly provoked type I/III IFN receptor-dependent upregulation of IFN-responsive genes in the villus epithelium. Consistent with this, activated IEL mediators protected cells against virus infection in vitro, and pre-activation of IEL in vivo profoundly limited norovirus infection. Hence, intraepithelial T cell activation offers an overt means to promote the innate antiviral potential of the intestinal epithelium.Support was provided by the Wellcome Trust (A.C.H., J.L.H., G.R) and Cancer Research UK (A.C.H.), Department of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s & St Thomas’ NHS Foundation Trust (L.A.-D.; A.C.H.); Marie Curie and EMBO fellowships (M.S.).This is the final published version. It first appeared at http://www.nature.com/ncomms/2015/150519/ncomms8090/full/ncomms8090.html

    Glial cell line-derived neurotrophic factor receptor REarranged during transfection agonist supports dopamine neurons in Vitro and enhances dopamine release In Vivo

    Get PDF
    Background Motor symptoms of Parkinson's disease (PD) are caused by degeneration and progressive loss of nigrostriatal dopamine neurons. Currently, no cure for this disease is available. Existing drugs alleviate PD symptoms but fail to halt neurodegeneration. Glial cell line-derived neurotrophic factor (GDNF) is able to protect and repair dopamine neurons in vitro and in animal models of PD, but the clinical use of GDNF is complicated by its pharmacokinetic properties. The present study aimed to evaluate the neuronal effects of a blood-brain-barrier penetrating small molecule GDNF receptor Rearranged in Transfection agonist, BT13, in the dopamine system. Methods We characterized the ability of BT13 to activate RET in immortalized cells, to support the survival of cultured dopamine neurons, to protect cultured dopamine neurons against neurotoxin-induced cell death, to activate intracellular signaling pathways both in vitro and in vivo, and to regulate dopamine release in the mouse striatum as well as BT13's distribution in the brain. Results BT13 potently activates RET and downstream signaling cascades such as Extracellular Signal Regulated Kinase and AKT in immortalized cells. It supports the survival of cultured dopamine neurons from wild-type but not from RET-knockout mice. BT13 protects cultured dopamine neurons from 6-Hydroxydopamine (6-OHDA) and 1-methyl-4-phenylpyridinium (MPP+)-induced cell death only if they express RET. In addition, BT13 is absorbed in the brain, activates intracellular signaling cascades in dopamine neurons both in vitro and in vivo, and also stimulates the release of dopamine in the mouse striatum. Conclusion The GDNF receptor RET agonist BT13 demonstrates the potential for further development of novel disease-modifying treatments against PD. (c) 2019 International Parkinson and Movement Disorder SocietyPeer reviewe

    A hyperpromiscuous antitoxin protein domain for the neutralization of diverse toxin domains

    Get PDF
    Toxin–antitoxin (TA) gene pairs are ubiquitous in microbial chromosomal genomes and plasmids as well as temperate bacteriophages. They act as regulatory switches, with the toxin limiting the growth of bacteria and archaea by compromising diverse essential cellular targets and the antitoxin counteracting the toxic effect. To uncover previously uncharted TA diversity across microbes and bacteriophages, we analyzed the conservation of genomic neighborhoods using our computational tool FlaGs (for flanking genes), which allows high-throughput detection of TA-like operons. Focusing on the widespread but poorly experimentally characterized antitoxin domain DUF4065, our in silico analyses indicated that DUF4065-containing proteins serve as broadly distributed antitoxin components in putative TA-like operons with dozens of different toxic domains with multiple different folds. Given the versatility of DUF4065, we have named the domain Panacea (and proteins containing the domain, PanA) after the Greek goddess of universal remedy. We have experimentally validated nine PanA-neutralized TA pairs. While the majority of validated PanA-neutralized toxins act as translation inhibitors or membrane disruptors, a putative nucleotide cyclase toxin from a Burkholderia prophage compromises transcription and translation as well as inducing RelA-dependent accumulation of the nucleotide alarmone (p)ppGpp. We find that Panacea-containing antitoxins form a complex with their diverse cognate toxins, characteristic of the direct neutralization mechanisms employed by Type II TA systems. Finally, through directed evolution, we have selected PanA variants that can neutralize noncognate TA toxins, thus experimentally demonstrating the evolutionary plasticity of this hyperpromiscuous antitoxin domain

    Potential Antiviral Options against SARS-CoV-2 Infection

    Get PDF
    As of June 2020, the number of people infected with severe acute respiratory coronavirus 2 (SARS-CoV-2) continues to skyrocket, with more than 6.7 million cases worldwide. Both the World Health Organization (WHO) and United Nations (UN) has highlighted the need for better control of SARS-CoV-2 infections. However, developing novel virus-specific vaccines, monoclonal antibodies and antiviral drugs against SARS-CoV-2 can be time-consuming and costly. Convalescent sera and safe-in-man broad-spectrum antivirals (BSAAs) are readily available treatment options. Here, we developed a neutralization assay using SARS-CoV-2 strain and Vero-E6 cells. We identified the most potent sera from recovered patients for the treatment of SARS-CoV-2-infected patients. We also screened 136 safe-in-man broad-spectrum antivirals against the SARS-CoV-2 infection in Vero-E6 cells and identified nelfinavir, salinomycin, amodiaquine, obatoclax, emetine and homoharringtonine. We found that a combination of orally available virus-directed nelfinavir and host-directed amodiaquine exhibited the highest synergy. Finally, we developed a website to disseminate the knowledge on available and emerging treatments of COVID-19
    corecore