2,121 research outputs found

    Nuclear Medium Modifications of Hadrons from Generalized Parton Distributions

    Full text link
    We study the structure of generalized parton distributions in spin 0 nuclei within a microscopic approach for nuclear dynamics. GPDs can be used on one side as tools to unravel the deep inelastic transverse structure of nuclei in terms of both transverse spatial and transverse momentum degrees of freedom. On the other, one can obtain information on GPDs themselves by observing how they become modified in the nuclear environment. We derive the structure of the nuclear deeply virtual Compton scattering tensor and generalized parton distributions at leading order in QQ in a field-theoretical framework. The nuclear generalized parton distributions are calculated using a two step process -- the convolution approach -- where the scattering process happens from a quark inside a nucleon, itself inside a nucleus, disregarding final state interactions with both the nuclear and nucleon debris. We point out that details of the nuclear long range interactions such as two-body currents, can be disregarded compared to the deep inelastic induced modifications of the bound GPDs. We show how the pattern of nuclear modifications predicted, and in particular the deviations of off-shell effects from the longitudinal convolution provide clear signals to be sought in experimental measurements. Finally, we find interesting relationships by studying Mellin moments in nuclei: in particular we predict the AA-dependence for the DD-term of GPDs within a microscopic approach, and the behavior with tt of the total momentum carried by quarks in a nucleus. The latter provides an important element for the evaluation of nuclear hadronization phenomena which are vital for interpreting current and future data at RHIC, HERMES and Jefferson Lab.Comment: 29 pages, 10 figure

    Biofilm-based simultaneous nitrification, denitrification, and phosphorous uptake in wastewater by Neurospora discreta

    Get PDF
    Biological removal of nitrogen and phosphorous from wastewater conventionally involves multiple processing steps to satisfy the differing oxygen requirements of the microbial species involved. In this work, simultaneous nitrification, denitrification, and phosphorous removal from synthetic wastewater were achieved by the fungus Neurospora discreta in a single-step, biofilm-based, aerobic process. The concentrations of carbon, nitrogen, and phosphorous in the synthetic wastewater were systematically varied to investigate their effects on nutrient removal rates and biofilm properties. Biofilm growth was significantly (p < 0.05) affected by carbon and nitrogen, but not by phosphorous concentration. Scanning electron microscopy revealed the effects of nutrients on biofilm microstructure, which in turn correlated with nutrient removal efficiencies. The carbohydrate and protein content in the biofilm matrix decreased with increasing carbon and nitrogen concentrations but increased with increasing phosphorous concentration in the wastewater. High removal efficiencies of carbon (96%), ammonium (86%), nitrate (100%), and phosphorus (82%) were achieved under varying nutrient conditions. Interestingly, decreasing the phosphorus concentration increased the nitrification and denitrification rates, and decreasing the nitrogen concentration increased the phosphorus removal rates significantly (p < 0.05). Correlations between biofilm properties and nutrient removal rates were also evaluated in this study

    The length of time's arrow

    Get PDF
    An unresolved problem in physics is how the thermodynamic arrow of time arises from an underlying time reversible dynamics. We contribute to this issue by developing a measure of time-symmetry breaking, and by using the work fluctuation relations, we determine the time asymmetry of recent single molecule RNA unfolding experiments. We define time asymmetry as the Jensen-Shannon divergence between trajectory probability distributions of an experiment and its time-reversed conjugate. Among other interesting properties, the length of time's arrow bounds the average dissipation and determines the difficulty of accurately estimating free energy differences in nonequilibrium experiments

    Study of surface morphology, elemental composition and origin of atmospheric aerosols (PM2.5 and PM10) over Agra, India

    Get PDF
    In situ measurements of PM (PM2.5 and PM10) particles were carried out using a medium volume air sampler (offline) and particle number concentrations of PM were measured by a Grimm aerosol spectrophotometer (online) during the study period of 2010�2011. The morphology and elemental composition analyses of PM were performed by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometry (EDS), respectively. The average mass concentrations of PM2.5 and PM10 were 97.2 and 242.6 µg/m3 at roadside (RD) and 121.2 and 230.5 µg/m3 at a semirural (SR) site, respectively. These concentrations were substantially higher than the NAAQS, WHO and USEPA standards. The highest mass and number concentrations of PM2.5 and PM10 were observed during winter, followed by those during the post-monsoon period and summer, with the lowest in the monsoon period. SEM and EDS analysis of PM indicated the presence of soot, mineral, tarballs, fly ash, aluminosilicates/silica, fluorine, carbon rich, and Cl-Na rich particles. Of these particles, soot, tarballs, and F-C rich particles dominate in PM2.5, whereas mineral, aluminosilicates, and Cl-Na rich particles dominate in PM10. The morphology and elemental composition of the particles varied over the seasons due to atmospheric processing. The highest carbon concentration (56) was observed in PM2.5 during summer at the RD, while in the monsoon, post-monsoon period and winter the carbon concentration was ~9 lower at the RD as compared to the SR. However, the concentration of carbon in PM10 was ~38 higher at the RD as compared to SR during both summer and winter. Air mass backward trajectory cluster analysis was performed, and the results indicate that the aerosol loadings over Agra are mainly transported from the Middle East and Arabian Sea during the summer and monsoon period, while during the pre-monsoon period and winter the aerosol loadings came from the northern region, and were due to the burning of biomass and coal, as well as other local activities

    Aircraft requirements for low/medium density markets

    Get PDF
    A study was conducted to determine the demand for and the economic factors involved in air transportation in a low and medium density market. The subjects investigated are as follows: (1) industry and market structure, (2) aircraft analysis, (3) economic analysis, (4) field surveys, and (5) computer network analysis. Graphs are included to show the economic requirements and the aircraft performance characteristics

    Bollworm incidence as affected by sowing date, nitrogen application and plant populanon in upland cotton

    Get PDF
    Trials were conducted to know the effect of sowing date, nitrogen application and plant population levels on the incidence of bollworms (pink and spotted bollworms) at Cotton Research Station, Sirsa (Haryana) during the crop seasons 1979–80 and 1980–81. Incidence of pink boll-worm on flowers and spotted bollworm on bolls was more in early sown crop than the normal and late sown crop. Late sown crop recorded highest level of pink bollworm incidence on bolls and number of diapausing larvae. Application of nitrogen resulted in higher incidence of bollworms whereas plant population levels did not influence the bollworm incidenc

    Zeroth Law compatibility of non-additive thermodynamics

    Full text link
    Non-extensive thermodynamics was criticized among others by stating that the Zeroth Law cannot be satisfied with non-additive composition rules. In this paper we determine the general functional form of those non-additive composition rules which are compatible with the Zeroth Law of thermodynamics. We find that this general form is additive for the formal logarithms of the original quantities and the familiar relations of thermodynamics apply to these. Our result offers a possible solution to the longstanding problem about equilibrium between extensive and non-extensive systems or systems with different non-extensivity parameters.Comment: 18 pages, 1 figur
    • …
    corecore