An unresolved problem in physics is how the thermodynamic arrow of time
arises from an underlying time reversible dynamics. We contribute to this issue
by developing a measure of time-symmetry breaking, and by using the work
fluctuation relations, we determine the time asymmetry of recent single
molecule RNA unfolding experiments. We define time asymmetry as the
Jensen-Shannon divergence between trajectory probability distributions of an
experiment and its time-reversed conjugate. Among other interesting properties,
the length of time's arrow bounds the average dissipation and determines the
difficulty of accurately estimating free energy differences in nonequilibrium
experiments