203 research outputs found

    STRUCTURAL COLOR COATING FILMS COMPOSED OF AN AMORPHOUS ARRAY OF SILICA AND CARBON BLACK PARTICLES BY ELECTROPHORETIC DEPOSITION

    Get PDF
    The color of a dye or pigment is an inherent property of the material that depends on its chemical nature. Some of these paints, especially those containing organic dye molecules, easily fade over time or upon exposure to light. In addition, there is concern over unfavorable influences on health and the environment, as some paints contain harmful substances. Therefore, coloration free from photo-bleaching or toxic materials is a central goal of paint research. Structural color is one of the most promising candidates to solve this challenge [1]. Submicron-sized microstructures reflect or scatter light so that waves of certain frequencies can constructively interfere to form this type of color. Because electronic excitation is not involved in the coloration mechanism, the structural color is not susceptible to fading unless the microstructure is destroyed. Structural color from particle arrays is advantageous in the sense that the color can be tuned merely by choosing the size of the microstructure without changing the material design. However, structural color from crystalline array of particles typically exhibits angular dependence, which is unfavorable for general purposes. Commonly used paints ideally appear the same color regardless of the viewing angle. In this study, we describe a novel and simple procedure to create a low angular dependence structural color coating by the electrophoretic deposition (EPD) process using SiO2 particles. A homogeneous coating film composed of an amorphous array of SiO2 particles was obtained by the EPD. However, the structural colors emitted from these arrays are very pale because the incoherent light scattering across the entire visible region is very strong. To reduce the contribution of incoherently scattered light to the overall scattering spectrum and to enhance the structural color of the colloidal amorphous arrays, black components, which absorb light uniformly across the entire visible region, can be incorporated into the films. Carbon black (CB) is one of the most common and environmentally preferable black substances and reflects very little light in the visible region of the spectrum. Sufficient visibility of the structural color was achieved by the co-deposition of carbon CB. The thickness of the coating films can be controlled by varying the applied voltage and/or deposition time. When the EPD process is carried out with a low applied voltage, a close-packed array of SiO2 particles that exhibits an iridescent structural color is obtained (Figure1a). However, an amorphous packing state can be acquired at a high applied voltage condition (Figure1b). The structural color generated from such coating films has a low angle dependence. These results indicate that the arrangement of particles in the array and the iridescence of the resultant structural color can also be controlled by varying the EPD conditions. Various vividly colored coatings can be produced from SiO2 particles with diameters between 200 and 300 nm. Moreover, coatings on materials with curved surfaces and complicated shapes, which are difficult to obtain by commonly used techniques were also successfully prepared via the EPD process. Please click Additional Files below to see the full abstract

    分掌変更に伴う役員退職給与に関する一考察

    Get PDF
    我が国の中小企業では、第一線を退いた経営者が後継者へ事業の引継ぎをする場合に、先代が会長職や監査役などに退きながらも、法人に引き続き在職しているといったケースがままある。こうしたケースは「分掌変更」と呼ばれ、法人が支払う役員退職給与に関しては、法基通9-2-32 によりその取扱いが定められている。 このような分掌変更に伴う役員退職給与の支給については、経営戦略としてだけでなく事業承継に関しても活用することができるため、中小企業にとっては利用価値のある取扱いということができるが、反面、その適用をめぐる課税庁との争いが多いのも事実であり、問題となっている。 そこで本稿では、法基通9-2-32 の適用に関する問題点を裁判例等から検討するとともに、通達に規定する「実質的に退職したと同様の事情」の判定基準及び今後の展望について考察した

    Body cooling effects of immersion of the forearms in high-concentration artificial carbonic acid water at 25°C

    Get PDF
    BACKGROUND: This study examined the effects of immersion in stirred, high-concentration, artificial carbonic acid water on body cooling. METHODS: Seven healthy male students (23 ± 2 years old) participated in the experiment. Signed informed consent was obtained from all subjects before the experiment. The subjects changed into shorts and T-shirts and entered an experimental room (with room temperature controlled at 30 °C and relative humidity maintained at 70%) at least 30 min before starting the experiment. After starting the experiment, the subjects were asked to rest on an exercise bike for 5 min and then pedal for 20 min. The exercise load was set to reach 50% of each subject\u27s presumed maximum oxygen intake at 5 min after starting exercise. Subjects then continued pedaling for 1 min to cool down. After this exercise, subjects sat on a chair and immersed forearms in tap water or artificial carbonic acid water (CO2 water) at 25 °C for 20 min. During immersion, tap water or CO2 water was stirred slowly with a pump. After immersion, subjects rested for 10 min. Skin temperature and skin blood flow (left forearm), as well as heart rate and ear canal temperature, were measured continuously. Thermal sensation and thermal comfort were measured intermittently. RESULTS: Skin blood flow of the immersed forearms was higher in CO2 water than in tap water during immersion. The blood flow in the last 5 min (average at rest was 100%) was significantly higher in CO2 water (290.85 ± 84.81%) than in tap water (104.80 ± 21.99%). Thermal sensation and thermal comfort were not different between conditions. Ear canal temperature significantly declined more in CO2 water (-?0.56 ± 0.31 °C) than in tap water (-?0.48 ± 0.30 °C) during immersion. CONCLUSIONS: Our study suggests that immersion of the forearms in slowly stirred CO2 water at 25 °C reduces core temperature elevated by heat stress or exercise more effectively than does tap water at the same temperature. Immersion of the forearms in stirred CO2 water at 25 °C could be useful as a preventive measure against heat stroke from summer work or exercise

    Supplementation of protein-free diet with whey protein hydrolysates prevents skeletal muscle mass loss in rats

    Get PDF
    AbstractMuscle mass loss is induced by aging, several catabolic diseases, and malnutrition. It is well known that ingestion of whey protein and its hydrolysates (WPH) is effective in stimulating muscle protein synthesis. However, these studies focused on the acute up-regulation of muscle protein synthesis, and few studies have investigated the effect of whey protein and WPH on muscle mass during chronic malnutrition. The aim of the present study was to investigate the effect of 7 days supplementation of whey protein and WPH on muscle reduction in Wistar rats fed a protein-free (PF) diet. Wistar rats were fed either a standard diet (containing 20% protein) or a PF diet during the experimental period. Those fed a PF diet received a dietary supplement containing an amino acid mixture, whey protein, or WPH for 7 days. The weight of the extensor digitorum longus decreased in rats fed a PF diet supplemented with the amino acid mixture or the whey protein. However, this decrease was partially but significantly suppressed in the group fed the WPH supplement. Additionally, administration of WPH induced a postprandial increase in plasma essential amino acids, branched-chain amino acids, and leucine concentration compared with animals fed the amino acid mixture or the whey protein. These results suggest that 7 days supplementation of the diet with WPH suppressed muscle weight loss in rats fed a PF diet

    Atypical gaze patterns in children and adults with autism spectrum disorders dissociated from developmental changes in gaze behaviour

    Get PDF
    Eye tracking has been used to investigate gaze behaviours in individuals with autism spectrum disorder (ASD). However, traditional analysis has yet to find behavioural characteristics shared by both children and adults with ASD. To distinguish core ASD gaze behaviours from those that change with development, we examined temporo-spatial gaze patterns in children and adults with and without ASD while they viewed video clips. We summarized the gaze patterns of 104 participants using multidimensional scaling so that participants with similar gaze patterns would cluster together in a two-dimensional plane. Control participants clustered in the centre, reflecting a standard gaze behaviour, whereas participants with ASD were distributed around the periphery. Moreover, children and adults were separated on the plane, thereby showing a clear effect of development on gaze behaviours. Post hoc frame-by-frame analyses revealed the following findings: (i) both ASD groups shifted their gaze away from a speaker earlier than the control groups; (ii) both ASD groups showed a particular preference for letters; and (iii) typical infants preferred to watch the mouth rather than the eyes during speech, a preference that reversed with development. These results highlight the importance of taking the effect of development into account when addressing gaze behaviours characteristic of ASD

    Dwarf Novae in the Shortest Orbital Period Regime: I. A New Short Period Dwarf Nova, OT J055717+683226

    Full text link
    We report the observation of a new dwarf nova, OT J055717+683226, during its first-ever recorded superoutburst in December 2006. Our observation shows that this object is an SU UMa-type dwarf nova having a very short superhump period of 76.67+/- 0.03 min (0.05324+/-0.00002 d). The next superoutburst was observed in March 2008. The recurrence time of superoutbursts (supercycle) is, hence, estimated to be ~480 d. The supercycle is much shorter than those of WZ Sge-type dwarf novae having supercycles of >~ 10 yr, which are a major population of dwarf novae in the shortest orbital period regime (<~85 min). Using a hierarchical cluster analysis, we identified seven groups of dwarf novae in the shortest orbital period regime. We identified a small group of objects that have short supercycles, small outburst amplitudes, and large superhump period excesses, compared with those of WZ Sge stars. OT J055717+683226 probably belongs to this group.Comment: 14 pages, 11 figures, accepted for publication in PAS

    Expression of hypoallergenic Der f 2 derivatives with altered intramolecular disulphide bonds induces the formation of novel ER-derived protein bodies in transgenic rice seeds

    Get PDF
    House dust mites (HDM) are the most common source of indoor allergens and are associated with allergic diseases worldwide. To benefit allergic patients, safer and non-invasive mucosal routes of oral administration are considered to be the best alternative to conventional allergen-specific immunotherapy. In this study, transgenic rice was developed expressing derivatives of the major HDM allergen Der f 2 with reduced Der f 2-specific IgE reactivity by disrupting intramolecular disulphide bonds in Der f 2. These derivatives were produced specifically as secretory proteins in the endosperm tissue of seeds under the control of the endosperm-specific glutelin GluB-1 promoter. Notably, modified Der f 2 derivatives aggregated in the endoplasmic reticulum (ER) lumen and were deposited in a unique protein body (PB)-like structure tentatively called the Der f 2 body. Der f 2 bodies were characterized by their intracellular localization and physico-chemical properties, and were distinct from ER-derived PBs (PB-Is) and protein storage vacuoles (PB-IIs). Unlike ER-derived organelles such as PB-Is, Der f 2 bodies were rapidly digested in simulated gastric fluid in a manner similar to that of PB-IIs. Oral administration in mice of transgenic rice seeds containing Der f 2 derivatives encapsulated in Der f 2 bodies suppressed Der f 2-specific IgE and IgG production compared with that in mice fed non-transgenic rice seeds, and the effect was dependent on the type of Der f 2 derivative expressed. These results suggest that engineered hypoallergenic Der f 2 derivatives expressed in the rice seed endosperm could serve as a basis for the development of viable strategies for the oral delivery of vaccines against HDM allergy

    Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae

    Full text link
    We systematically surveyed period variations of superhumps in SU UMa-type dwarf novae based on newly obtained data and past publications. In many systems, the evolution of superhump period are found to be composed of three distinct stages: early evolutionary stage with a longer superhump period, middle stage with systematically varying periods, final stage with a shorter, stable superhump period. During the middle stage, many systems with superhump periods less than 0.08 d show positive period derivatives. Contrary to the earlier claim, we found no clear evidence for variation of period derivatives between superoutburst of the same object. We present an interpretation that the lengthening of the superhump period is a result of outward propagation of the eccentricity wave and is limited by the radius near the tidal truncation. We interpret that late stage superhumps are rejuvenized excitation of 3:1 resonance when the superhumps in the outer disk is effectively quenched. Many of WZ Sge-type dwarf novae showed long-enduring superhumps during the post-superoutburst stage having periods longer than those during the main superoutburst. The period derivatives in WZ Sge-type dwarf novae are found to be strongly correlated with the fractional superhump excess, or consequently, mass ratio. WZ Sge-type dwarf novae with a long-lasting rebrightening or with multiple rebrightenings tend to have smaller period derivatives and are excellent candidate for the systems around or after the period minimum of evolution of cataclysmic variables (abridged).Comment: 239 pages, 225 figures, PASJ accepte

    MicroRNA-140 mediates RB tumor suppressor function to control stem cell-like activity through interleukin-6

    Get PDF
    We established an in vitro cell culture system to determine novel activities of the retinoblastoma (Rb) protein during tumor progression. Rb depletion in p53-null mouse-derived soft tissue sarcoma cells induced a spherogenic phenotype. Cells retrieved from Rb-depleted spheres exhibited slower proliferation and less efficient BrdU incorporation, however, much higher spherogenic activity and aggressive behavior. We discovered six miRNAs, including mmu-miR-18a, -25, -29b, -140, -337, and -1839, whose expression levels correlated tightly with the Rb status and spherogenic activity. Among these, mmu-miR-140 appeared to be positively controlled by Rb and to antagonize the effect of Rb depletion on spherogenesis and tumorigenesis. Furthermore, among genes potentially targeted by mmu-miR-140, Il-6 was upregulated by Rb depletion and downregulated by mmu-mir-140 overexpression. Altogether, we demonstrate the possibility that mmu-mir-140 mediates the Rb function to downregulate Il-6 by targeting its 3\u27-untranslated region. Finally, we detected the same relationship among RB, hsa-miR-140 and IL-6 in a human breast cancer cell line MCF-7. Because IL-6 is a critical modulator of malignant features of cancer cells and the RB pathway is impaired in the majority of cancers, hsa-miR-140 might be a promising therapeutic tool that disrupts linkage between tumor suppressor inactivation and pro-inflammatory cytokine response.Supplementary Table1 and Supplementary Table2: We offer the table data with an Excel fil

    doi:10.1098/rspb.2006.0005

    Get PDF
    It is obvious, at least qualitatively, that small animals move their locomotory apparatus faster than large animals: small insects move their wings invisibly fast, while large birds flap their wings slowly. However, quantitative observations have been difficult to obtain from free-ranging swimming animals. We surveyed the swimming behaviour of animals ranging from 0.5 kg seabirds to 30 000 kg sperm whales using animalborne accelerometers. Dominant stroke cycle frequencies of swimming specialist seabirds and marine mammals were proportional to mass K0.29 (R 2 Z0.99, nZ17 groups), while propulsive swimming speeds of 1-2 m s K1 were independent of body size. This scaling relationship, obtained from breath-hold divers expected to swim optimally to conserve oxygen, does not agree with recent theoretical predictions for optimal swimming. Seabirds that use their wings for both swimming and flying stroked at a lower frequency than other swimming specialists of the same size, suggesting a morphological trade-off with wing size and stroke frequency representing a compromise. In contrast, foot-propelled diving birds such as shags had similar stroke frequencies as other swimming specialists. These results suggest that muscle characteristics may constrain swimming during cruising travel, with convergence among diving specialists in the proportions and contraction rates of propulsive muscles. Keywords: accelerometer; power spectral density; dive; free-ranging; scaling; optimal INTRODUCTION In a Friday Evening Discourse given at the Royal Institution in 1949 Direct observations have often been used to record movements of flying animals MATERIAL AND METHODS We compared the stroke frequencies and swimming speeds of a range of animals in relation to their body sizes. Owing to morphological differences among species, body mass was used as an index of body size. Morphological measurements were used to estimate mass for adult Weddell seals , leatherback turtles and sperm whales Field experiments using accelerometers were conducted from tropical to Antarctic regions. Detailed protocols of the field experiments were already published for the sperm whale (French Guiana, South America, May 2001. Study protocols followed those of the above-mentioned published studies. We used acceleration data loggers (D2GT and PD2GT, Little Leonardo Ltd, Tokyo; Dtag, the Woods Hole Oceanographic Institution; We could detect the duration of each stroke cycle from the time-series data, but our goal was to determine the dominant stroke cycle frequency for each animal. The periodic properties of the acceleration signal allowed us to apply a Fourier Transform to determine the dominant frequency. Power spectral density (PSD) was calculated from the entire acceleration dataset of each animal, or a subsample during identified foraging or migration behaviour to determine the dominant stroke cycle frequency using a Fast Fourier Transformation with a computer program package, IGOR PRO (WaveMetric, Inc., Lake Oswego, OR, USA). For the sperm whale, the bottom phase of the dive was not used as it is typified by body rotations, which can occur at similar rates to the fluking action. Stroke frequency and body size of animals K. Sato et al. 473 Proc. R. Soc. B (2007) 3. RESULTS Seals move their rear flippers side-to-side and these movements are detected as fluctuations in lateral acceleration along the transverse axis of the body (Mirounga angustirostris; with R 2 Z0.99 (nZ17, p!0.0001). The 95% confidence interval for the exponent was from K0.28 to K0.30. In contrast, the mean propulsive swim speed (U ) among these species was independent of body mass in the log-log analysis (UZ1.88 m K0.05 , R 2 Z0.18, nZ17, pZ0.09). Sperm whales of more than 30 tons, 300 kg seals and 0.5 kg seabirds all swam at mean swim speeds around 1-2 m s K1 during transit between the sea surface and the foraging depths (table 1). DISCUSSION According to experimental measurements based on respirometers in water tunnels and the doubly labelled water technique, the optimum swim speed was proportional to mass 0.27 Stroke frequency and body size of animals K. Sato et al. 475 Proc. R. Soc. B K1 ). Why these free-ranging animals did not follow the theoretical and experimental predictions for optimal swimming speed is a question we cannot answer now. The constructal model The isometric model proposed by According to the present study, swim speed (U ) was independent of body size, therefore the frequency is expected to be proportional to area divided by mass (S/m), which is expected to be proportional to the length K1 or mass K1/3 . Results of the present study were obtained from morphologically diverse animals. Nonetheless, f is inversely proportional to m K0.29 , close to the predicted value of mass K1/3 , implying that diving specialists among seabirds and marine mammals have evolved similar proportions of propulsive muscles and muscle contraction rates during cruising travel. The scaling relationship was very strong among swimming specialists during contexts when they were predicted to swim efficiently. Moreover, interesting deviations from the regression line (see Japanese flounders Paralichthys olivaceus had lower stroke frequencies than other swimming specialists (open pink circle i
    corecore