11 research outputs found

    A simple role of coral-algal symbiosis in coral calcification based on multiple geochemical tracers

    Get PDF
    Light-enhanced calcification of reef-building corals, which eventually create vast coral reefs, is well known and based on coral-algal symbiosis. Several controversial hypotheses have been proposed as possible mechanisms for connecting symbiont photosynthesis and coral calcification, including pH rise in the internal pool, role of organic matrix secretion, and enzyme activities. Here, based on the skeletal chemical and isotopic compositions of symbiotic and asymbiotic primary polyps of Acropora digitifera corals, we show a simple pH increase in the calcification medium as the predominant contribution of symbionts to calcification of host corals. We used the symbiotic and asymbiotic primary polyps reared for 10 days at four temperatures (27, 29, 31, and 33 °C), five salinities (34, 32, 30, 28, and 26), and four pCO2 levels (<300, 400, 800, and 1000 µatm). As a result of analyzing multiple geochemical tracers (U/Ca, Mg/Ca, Sr/Ca, δ18O, δ13C, and δ44Ca), a clear and systematic decrease in skeletal U/Ca ratio (used as a proxy for calcification fluid pH) was observed, indicating a higher pH of the fluid in symbiotic compared to asymbiotic polyps. In contrast, Mg/Ca ratios (used as a tentative proxy for organic matrix secretion) and δ44Ca (used as an indicator of Ca2+ pathway to the fluid) did not differ between symbiotic and asymbiotic polyps. This suggests that organic matrix secretion related to coral calcification is controlled mainly by the coral host itself, and a transmembrane transport of Ca2+ does not vary according to symbiosis relationship. Skeletal δ18O values of both symbiotic and asymbiotic polyps showed offsets between them with identical temperature dependence. Based on a newly proposed model, behavior of δ18O in the present study seems to reflect the rate of CO2 hydration in the calcifying fluid. Since CO2 hydration is promoted by enzyme carbonic anhydrase, the offset of δ18O values between symbiotic and asymbiotic polyps is attributed to the differences of enzyme activity, although the enzyme is functional even in the asymbiotic polyp. Symbiotic δ13C values in the temperature and salinity experiments were higher compared to those in the asymbiotic polyps due to photosynthesis, although photosynthetic δ13C signals in the pCO2 experiment were masked by the dominant δ13C gradient in dissolved inorganic carbon in seawater caused by 13C-depletd CO2 gas addition in the higher pCO2 treatments. Sr/Ca ratios showed a negligible relationship according to variation of temperature, salinity, and pCO2, although it might be attributed to relatively large deviations of replicates of Sr/Ca ratios in the present study. Overall, only the U/Ca ratio showed a significant difference between symbiotic and asymbiotic polyps throughout all experiments, indicating that the critical effect on coral calcification caused by symbiotic algae is the increase of pH of the calcifying fluid by photosynthesis

    Skeletal oxygen and carbon isotope compositions of Acropora coral primary polyps experimentally cultured at different temperatures

    Get PDF
    We investigated temperature and growth‐rate dependency of skeletal oxygen and carbon isotopes in primary polyps of Acropora digitifera (Scleractinia: Acroporidae) by culturing them at 20, 23, 27, or 31°C. Calcification was most rapid at 27 and 31°C. We obtained a δ18O‐temperature relationship (−0.18‰ °C−1) consistent with reported ranges for Porites, indicating that juvenile Acropora polyps can be used for temperature reconstruction. A growth‐rate dependency of skeletal isotopes was detected in the experimental polyps cultured at lower water temperatures, when the skeletal growth rate of these polyps was also low. The estimated upper calcification flux limit for a kinetic isotope effect to be observed in the δ18O‐growth rate relationship (∼0.4–0.7 g CaCO3 cm−2 yr−1) was similar to the calcification flux in Porites corresponding to a linear extension rate of 5 mm yr−1, the maximum rate at which the kinetic isotope effect is evident. This result suggests that the calcification flux can be used as a measure of growth rate‐related isotope fractionation, that is, the kinetic isotope effect, in corals of different genera and at different growth stages

    Assessment of chemical compositions in coral skeletons (Acropora digitifera and Porites australiensis) as temperature proxies

    Get PDF
    Although biogenic carbonates, such as foraminifera and coccolithophorids, are valuable tools for reconstructing past environments, scleractinian corals also offer environmental data from tropical to subtropical regions with a higher time resolution. For example, oxygen isotopes (δ18O) and strontium-calcium (Sr/Ca) ratios have been utilized to reconstruct sea surface temperatures and salinity, primarily through the use of massive-type Porites sp. from the Pacific, as well as corals like Diploria and Montastrea from the Atlantic. While a few types of corals other than Porites have been utilized in paleoclimate studies, comprehensive evaluations of their geochemical tracers as temperature proxies have not been thoroughly conducted. Therefore, in this study, we focused on branching-type Acropora, which are found worldwide and are often present in fossil corals. We conducted a comparison of the chemical compositions (δ18O, δ13C, Sr/Ca, U/Ca, Mg/Ca, and Ba/Ca) of Acropora digitifera and Porites australiensis through temperature-controlled culture experiments. The validity of using the chemical components of A. digitifera as temperature proxies was then evaluated. Three colonies of A. digitifera and P. australiensis were collected for culture experiments on Sesoko Island, Okinawa, Japan. We reared coral samples in seawater with five different temperature settings (18, 21, 24, 27, 30°). The calcification rate and photosynthesis efficiency (Fv/Fm) of each nubbin were measured during the experimental period. After the culture experiment for 77 days, chemical components in skeletal parts grown during the experiment were then measured. Consequently, the mean growth rates and Fv/Fm throughout the experiment were higher for A. digitifera (0.22%/d and 0.63 for growth rate and Fv/Fm) compared to those for P. australiensis (0.11%/d and 0.38 for growth rate and Fv/Fm). This suggests that the higher efficiency of photosynthesis in A. digitifera would promote greater calcification compared to P. australiensis. Regarding the potential use as temperature proxies, A. digitifera exhibited a strong negative correlation, on average, between δ18O and the water temperature (r = 0.95, p&lt; 0.001). The temperature dependency was found to be comparable to that reported in Porites corals (-0.11 and -0.17 ‰/°C for P. australiensis and A. digitifera, respectively). Thus, the δ18O of A. digitifera appeared to be a useful temperature proxy, although it was also slightly influenced by skeletal growth rate at the same temperature. A strong negative correlation was also observed between the mean Sr/Ca ratio and temperature in A. digitifera (r = 0.61, p&lt; 0.001) as well as P. australiensis (r = 0.56, p&lt; 0.001), without a clear influence from the skeletal growth rate. Therefore, the skeletal Sr/Ca ratio in corals may have been primarily influenced by water temperature, although large deviations in Sr/Ca were observed in A. digitifera, even at the same temperature settings. This deviation can be reduced by subsampling an apical part of a polyp including the axis of skeletal growth. The U/Ca ratio of A. digitifera appeared to be affected by internal pH variation within the corals, especially at 30°C. Similar to U/Ca ratios, metabolic and kinetic effects on corals were observed in δ13C of A. digitifera at 18 and 30°C. In addition, considering the variation pattern of both U/Ca and δ13C of A. digitifera at 30°C, it has been suggested that respirations may overwhelm photosynthesis for coral samples at 30°C. Therefore, the U/Ca and δ13C of A. digitifera could potentially be used as proxies of biomineralization processes, whereas the δ18O and Sr/Ca displayed a high possibility of acting as temperature proxies

    マウス胸腺の脂肪細胞分化過程の速度論による解析

    Get PDF
    The differential process of adipocytes was investigated in the thymus and spleen of BALB/c mice by the real time PCR method. The transcriptions of PPARγ (PP) ,adiponectin (Ad) and resistin (Re) were considered as indications of differential stages of adipocytes and the transcription ratios, log Ad/PP and log Re/PP , were measured. These logarithmic ratios increased rapidly, at the border between fetal stage and neonatal, from negative value to positive in the thymus and to nearly 0 in the spleen. Subsequently, they were remained virtually constant throughout the experimental period. Kinetics was applied to the differential model of adipocytes in which the quantity of each transcription was assumed to be proportional to the cell number, and the changes of log Ad/PP and log Re/PP with age were interpreted successfullyBALB/cマウスの胸腺および脾臓での脂肪細胞の分化過程を,PPARγ(PP)に対するアディポネクチン(Ad),およびレジスチン(Re)の転写量を指標として,リアルタイムPCR法により検討した。加齢に伴い成熟脂肪細胞が増加してくる胸腺においては,アディポネクチンおよびレジスチンの転写量は,胎生期にはPPARγ の転写量より少なかったが,出生を境に急激に増大し,PPARγ の転写量の数十倍となり,その後ほぼ一定となった。成熟した脂肪細胞が認められない脾臓では,アディポネクチンおよびレジスチンの転写量は,出生を境に増大し,PPARyの転写量とほぼ等しくなった。各遺伝子の転写量は細胞数に比例すると仮定し,脂肪細胞系列の幹細胞を考えることにより,これらの結果を,速度論により説明することができた

    Nutrient availability affects the response of juvenile corals and the endosymbionts to ocean acidification

    No full text
    The interactive effects of nutrient availability and ocean acidification on coral calcification were investigated using post-settlement juvenile corals of Acropora digitifera cultured in nutrient-sufficient or nutrient-depleted seawater for 4 d and then exposed to seawater with different partial pressure of carbon dioxide () conditions (38.8 or 92.5 Pa) for 10 d. After the nutrient pretreatment, corals in the high nutrient condition (HN corals) had a significantly higher abundance of endosymbiotic algae than did those in the low nutrient condition (LN corals). The high abundance of endosymbionts in HN corals was reduced as a result of subsequent seawater acidification, and the chlorophyll a per algal cell increased. The photosynthetic oxygen production rate by endosymbionts was enhanced by the acidified seawater regardless of the nutrient treatment, indicating that the reduction in endosymbiont density in HN corals due to acidification was compensated for by the increase in chlorophyll a per cell. Though the photosynthetic rate increased in the acidified conditions for both LN and HN corals, the calcification rate significantly decreased for LN corals but not for HN corals. The acquisition of nutrients from seawater, rather than the increase in alkalinity caused by photosynthesis, might effectively alleviate the negative response of coral calcification to seawater acidification, suggesting that the response of corals and their endosymbionts to ocean acidification can be influenced by nutrient conditions

    DataSheet_1_Assessment of chemical compositions in coral skeletons (Acropora digitifera and Porites australiensis) as temperature proxies.docx

    No full text
    Although biogenic carbonates, such as foraminifera and coccolithophorids, are valuable tools for reconstructing past environments, scleractinian corals also offer environmental data from tropical to subtropical regions with a higher time resolution. For example, oxygen isotopes (δ18O) and strontium-calcium (Sr/Ca) ratios have been utilized to reconstruct sea surface temperatures and salinity, primarily through the use of massive-type Porites sp. from the Pacific, as well as corals like Diploria and Montastrea from the Atlantic. While a few types of corals other than Porites have been utilized in paleoclimate studies, comprehensive evaluations of their geochemical tracers as temperature proxies have not been thoroughly conducted. Therefore, in this study, we focused on branching-type Acropora, which are found worldwide and are often present in fossil corals. We conducted a comparison of the chemical compositions (δ18O, δ13C, Sr/Ca, U/Ca, Mg/Ca, and Ba/Ca) of Acropora digitifera and Porites australiensis through temperature-controlled culture experiments. The validity of using the chemical components of A. digitifera as temperature proxies was then evaluated. Three colonies of A. digitifera and P. australiensis were collected for culture experiments on Sesoko Island, Okinawa, Japan. We reared coral samples in seawater with five different temperature settings (18, 21, 24, 27, 30°). The calcification rate and photosynthesis efficiency (Fv/Fm) of each nubbin were measured during the experimental period. After the culture experiment for 77 days, chemical components in skeletal parts grown during the experiment were then measured. Consequently, the mean growth rates and Fv/Fm throughout the experiment were higher for A. digitifera (0.22%/d and 0.63 for growth rate and Fv/Fm) compared to those for P. australiensis (0.11%/d and 0.38 for growth rate and Fv/Fm). This suggests that the higher efficiency of photosynthesis in A. digitifera would promote greater calcification compared to P. australiensis. Regarding the potential use as temperature proxies, A. digitifera exhibited a strong negative correlation, on average, between δ18O and the water temperature (r = 0.95, p18O of A. digitifera appeared to be a useful temperature proxy, although it was also slightly influenced by skeletal growth rate at the same temperature. A strong negative correlation was also observed between the mean Sr/Ca ratio and temperature in A. digitifera (r = 0.61, p13C of A. digitifera at 18 and 30°C. In addition, considering the variation pattern of both U/Ca and δ13C of A. digitifera at 30°C, it has been suggested that respirations may overwhelm photosynthesis for coral samples at 30°C. Therefore, the U/Ca and δ13C of A. digitifera could potentially be used as proxies of biomineralization processes, whereas the δ18O and Sr/Ca displayed a high possibility of acting as temperature proxies.</p

    NAD+ augmentation with nicotinamide riboside improves lymphoid potential of Atm−/− and old mice HSCs

    No full text
    NAD+ supplementation has significant benefits in compromised settings, acting largely through improved mitochondrial function and DNA repair. Elevating NAD+ to physiological levels has been shown to improve the function of some adult stem cells, with implications that these changes will lead to sustained improvement of the tissue or system. Here, we examined the effect of elevating NAD+ levels in models with reduced hematopoietic stem cell (HSC) potential, ATM-deficient and aged WT mice, and showed that supplementation of nicotinamide riboside (NR), a NAD+ precursor, improved lymphoid lineage potential during supplementation. In aged mice, this improved lymphoid potential was maintained in competitive transplants and was associated with transcriptional repression of myeloid gene signatures in stem and lineage-committed progenitor cells after NR treatment. However, the altered transcriptional priming of the stem cells toward lymphoid lineages was not sustained in the aged mice after NR removal. These data characterize significant alterations to the lineage potential of functionally compromised HSCs after short-term exposure to NR treatment

    Short-term periodic restricted feeding elicits metabolome-microbiome signatures with sex dimorphic persistence in primate intervention

    No full text
    Abstract Dietary restriction has shown benefits in physiological, metabolic, and molecular signatures associated with aging but is a difficult lifestyle to maintain for most individuals. In mice, a less restrictive diet that allows for cyclical periods of reduced calories mitigates aging phenotypes, yet the effects of such an intervention in a genetically heterogenous, higher-order mammal has not been examined. Here, using middle-aged rhesus macaques matched for age and sex, we show that a regimen of 4 days of low-calorie intake followed by 10 days of ad libitum feeding (4:10 diet) performed in repeating cycles over 12 weeks led to significant loss of weight and fat percentage, despite the free access to food for most of the study duration. We show the 4-day restriction period is sufficient to drive alterations to the serum metabolome characterized by substantial differences in lipid classes. These phenotypes were paralleled by changes in the gut microbiome of restricted monkeys that highlight the involvement of a microbiome-metabolome axis. This regimen shows promising phenotypes, with some sex-dimorphic responses, including residual memory of the diet. As many calorie restriction interventions are difficult to sustain, we propose that this short-term diet may be easier to adhere to and have benefits directly relevant to human aging
    corecore