29,410 research outputs found

    Exciton and biexciton energies in bilayer systems

    Get PDF
    We report calculations of the energies of excitons and biexcitons in ideal two-dimensional bilayer systems within the effective-mass approximation with isotropic electron and hole masses. The exciton energies are obtained by a simple numerical integration technique, while the biexciton energies are obtained from diffusion quantum Monte Carlo calculations. The exciton binding energy decays as the inverse of the separation of the layers, while the binding energy of the biexciton with respect to dissociation into two separate excitons decays exponentially

    Evolution of InAs branches in InAs/GaAs nanowire heterostructures

    Get PDF
    Branched nanowireheterostructures of InAs∕GaAs were observed during Au-assisted growth of InAs on GaAsnanowires. The evolution of these branches has been determined through detailed electron microscopy characterization with the following sequence: (1) in the initial stage of InAsgrowth, the Au droplet is observed to slide down the side of the GaAsnanowire, (2) the downward movement of Aunanoparticle later terminates when the nanoparticle encounters InAsgrowing radially on the GaAsnanowire sidewalls, and (3) with further supply of In and As vapor reactants, the Aunanoparticles assist the formation of InAs branches with a well-defined orientation relationship with GaAs∕InAs core/shell stems. We anticipate that these observations advance the understanding of the kink formation in axial nanowireheterostructures.The Australian Research Council is acknowledged for the financial support of this project. One of the authors M.P. acknowledges the support of an International Postgraduate Research Scholarship

    Noisy pre-processing facilitating a photonic realisation of device-independent quantum key distribution

    Full text link
    Device-independent quantum key distribution provides security even when the equipment used to communicate over the quantum channel is largely uncharacterized. An experimental demonstration of device-independent quantum key distribution is however challenging. A central obstacle in photonic implementations is that the global detection efficiency, i.e., the probability that the signals sent over the quantum channel are successfully received, must be above a certain threshold. We here propose a method to significantly relax this threshold, while maintaining provable device-independent security. This is achieved with a protocol that adds artificial noise, which cannot be known or controlled by an adversary, to the initial measurement data (the raw key). Focusing on a realistic photonic setup using a source based on spontaneous parametric down conversion, we give explicit bounds on the minimal required global detection efficiency.Comment: 5+16 pages, 4 figure

    Hysteretic and chaotic dynamics of viscous drops in creeping flows with rotation

    Full text link
    It has been shown in our previous publication (Blawzdziewicz,Cristini,Loewenberg,2003) that high-viscosity drops in two dimensional linear creeping flows with a nonzero vorticity component may have two stable stationary states. One state corresponds to a nearly spherical, compact drop stabilized primarily by rotation, and the other to an elongated drop stabilized primarily by capillary forces. Here we explore consequences of the drop bistability for the dynamics of highly viscous drops. Using both boundary-integral simulations and small-deformation theory we show that a quasi-static change of the flow vorticity gives rise to a hysteretic response of the drop shape, with rapid changes between the compact and elongated solutions at critical values of the vorticity. In flows with sinusoidal temporal variation of the vorticity we find chaotic drop dynamics in response to the periodic forcing. A cascade of period-doubling bifurcations is found to be directly responsible for the transition to chaos. In random flows we obtain a bimodal drop-length distribution. Some analogies with the dynamics of macromolecules and vesicles are pointed out.Comment: 22 pages, 13 figures. submitted to Journal of Fluid Mechanic

    Universality at integer quantum Hall transitions

    Full text link
    We report in this paper results of experimental and theoretical studies of transitions between different integer quantum Hall phases, as well as transition between the insulating phase and quantum Hall phases at high magnetic fields. We focus mainly on universal properties of the transitions. We demonstrate that properly defined conductivity tensor is universal at the transitions. We also present numerical results of a non-interacting electron model, which suggest that the Thouless conductance is universal at integer quantum Hall transitions, just like the conductivity tensor. Finite temperature and system size effects near the transition point are also studied.Comment: 20 pages, 15 figure

    Distinct order of Gd 4f and Fe 3d moments coexisting in GdFe4Al8

    Full text link
    Single crystals of flux-grown tetragonal GdFe4Al8 were characterized by thermodynamic, transport, and x-ray resonant magnetic scattering measurements. In addition to antiferromagnetic order at TN ~ 155 K, two low-temperature transitions at T1 ~ 21 K and T2 ~ 27 K were identified. The Fe moments order at TN with an incommensurate propagation vector (tau,tau,0) with tau varying between 0.06 and 0.14 as a function of temperature, and maintain this order over the entire T<TN range. The Gd 4f moments order below T2 with a ferromagnetic component mainly out of plane. Below T1, the ferromagnetic components are confined to the crystallographic plane. Remarkably, at low temperatures the Fe moments maintain the same modulation as at high temperatures, but the Gd 4f moments apparently do not follow this modulation. The magnetic phase diagrams for fields applied in [110] and [001] direction are presented and possible magnetic structures are discussed.Comment: v2: 14 pages, 12 figures; PRB in prin

    On the six-dimensional origin of the AGT correspondence

    Full text link
    We argue that the six-dimensional (2,0) superconformal theory defined on M \times C, with M being a four-manifold and C a Riemann surface, can be twisted in a way that makes it topological on M and holomorphic on C. Assuming the existence of such a twisted theory, we show that its chiral algebra contains a W-algebra when M = R^4, possibly in the presence of a codimension-two defect operator supported on R^2 \times C \subset M \times C. We expect this structure to survive the \Omega-deformation.Comment: References added. 14 page

    Evolving temporal association rules with genetic algorithms

    Get PDF
    A novel framework for mining temporal association rules by discovering itemsets with a genetic algorithm is introduced. Metaheuristics have been applied to association rule mining, we show the efficacy of extending this to another variant - temporal association rule mining. Our framework is an enhancement to existing temporal association rule mining methods as it employs a genetic algorithm to simultaneously search the rule space and temporal space. A methodology for validating the ability of the proposed framework isolates target temporal itemsets in synthetic datasets. The Iterative Rule Learning method successfully discovers these targets in datasets with varying levels of difficulty
    corecore