Device-independent quantum key distribution provides security even when the
equipment used to communicate over the quantum channel is largely
uncharacterized. An experimental demonstration of device-independent quantum
key distribution is however challenging. A central obstacle in photonic
implementations is that the global detection efficiency, i.e., the probability
that the signals sent over the quantum channel are successfully received, must
be above a certain threshold. We here propose a method to significantly relax
this threshold, while maintaining provable device-independent security. This is
achieved with a protocol that adds artificial noise, which cannot be known or
controlled by an adversary, to the initial measurement data (the raw key).
Focusing on a realistic photonic setup using a source based on spontaneous
parametric down conversion, we give explicit bounds on the minimal required
global detection efficiency.Comment: 5+16 pages, 4 figure