30,483 research outputs found

    Stress-intensity factor calculations using the boundary force method

    Get PDF
    The Boundary Force Method (BFM) was formulated for the three fundamental problems of elasticity: the stress boundary value problem, the displacement boundary value problem, and the mixed boundary value problem. Because the BFM is a form of an indirect boundary element method, only the boundaries of the region of interest are modeled. The elasticity solution for the stress distribution due to concentrated forces and a moment applied at an arbitrary point in a cracked infinite plate is used as the fundamental solution. Thus, unlike other boundary element methods, here the crack face need not be modeled as part of the boundary. The formulation of the BFM is described and the accuracy of the method is established by analyzing a center-cracked specimen subjected to mixed boundary conditions and a three-hole cracked configuration subjected to traction boundary conditions. The results obtained are in good agreement with accepted numerical solutions. The method is then used to generate stress-intensity solutions for two common cracked configurations: an edge crack emanating from a semi-elliptical notch, and an edge crack emanating from a V-notch. The BFM is a versatile technique that can be used to obtain very accurate stress intensity factors for complex crack configurations subjected to stress, displacement, or mixed boundary conditions. The method requires a minimal amount of modeling effort

    Boundary force method for analyzing two-dimensional cracked bodies

    Get PDF
    The Boundary Force Method (BFM) was formulated for the two-dimensional stress analysis of complex crack configurations. In this method, only the boundaries of the region of interest are modeled. The boundaries are divided into a finite number of straight-line segments, and at the center of each segment, concentrated forces and a moment are applied. This set of unknown forces and moments is calculated to satisfy the prescribed boundary conditions of the problem. The elasticity solution for the stress distribution due to concentrated forces and a moment applied at an arbitrary point in a cracked infinite plate are used as the fundamental solution. Thus, the crack need not be modeled as part of the boundary. The formulation of the BFM is described and the accuracy of the method is established by analyzing several crack configurations for which accepted stress-intensity factor solutions are known. The crack configurations investigated include mode I and mixed mode (mode I and II) problems. The results obtained are, in general, within + or - 0.5 percent of accurate numerical solutions. The versatility of the method is demonstrated through the analysis of complex crack configurations for which limited or no solutions are known

    The Fermi level effect in III-V intermixing: The final nail in the coffin?

    Get PDF
    Copyright 1997 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Journal of Applied Physics 81, 2179 (1997) and may be found at

    A transformation sequencing approach to pseudorandom number generation

    Get PDF
    This paper presents a new approach to designing pseudorandom number generators based on cellular automata. Current cellular automata designs either focus on i) ensuring desirable sequence properties such as maximum length period, balanced distribution of bits and uniform distribution of n-bit tuples etc. or ii) ensuring the generated sequences pass stringent randomness tests. In this work, important design patterns are first identified from the latter approach and then incorporated into cellular automata such that the desirable sequence properties are preserved like in the former approach. Preliminary experiment results show that the new cellular automata designed have potential in passing all DIEHARD tests

    Nuclear isotope thermometry

    Get PDF
    We discuss different aspects which could influence temperatures deduced from experimental isotopic yields in the multifragmentation process. It is shown that fluctuations due to the finite size of the system and distortions due to the decay of hot primary fragments conspire to blur the temperature determination in multifragmentation reactions. These facts suggest that caloric curves obtained through isotope thermometers, which were taken as evidence for a first-order phase transition in nuclear matter, should be investigated very carefully.Comment: 9 pages, 7 figure

    A re-evaluation of finite-element models and stress-intensity factors for surface cracks emanating from stress concentrations

    Get PDF
    A re-evaluation of the 3-D finite-element models and methods used to analyze surface crack at stress concentrations is presented. Previous finite-element models used by Raju and Newman for surface and corner cracks at holes were shown to have ill-shaped elements at the intersection of the hole and crack boundaries. These ill-shaped elements tended to make the model too stiff and, hence, gave lower stress-intensity factors near the hole-crack intersection than models without these elements. Improved models, without these ill-shaped elements, were developed for a surface crack at a circular hole and at a semi-circular edge notch. Stress-intensity factors were calculated by both the nodal-force and virtual-crack-closure methods. Both methods and different models gave essentially the same results. Comparisons made between the previously developed stress-intensity factor equations and the results from the improved models agreed well except for configurations with large notch-radii-to-plate-thickness ratios. Stress-intensity factors for a semi-elliptical surface crack located at the center of a semi-circular edge notch in a plate subjected to remote tensile loadings were calculated using the improved models. The ratio of crack depth to crack length ranged form 0.4 to 2; the ratio of crack depth to plate thickness ranged from 0.2 to 0.8; and the ratio of notch radius to the plate thickness ranged from 1 to 3. The models had about 15,000 degrees-of-freedom. Stress-intensity factors were calculated by using the nodal-force method

    Improved drive current in RF vertical MOSFETS using hydrogen anneal

    No full text
    This letter reports a study on the effect of a hydrogen anneal after silicon pillar etch of surround-gate vertical MOSFETs intended for RF applications. A hydrogen anneal at 800 ?C is shown to give a 30% improvement in the drive current of 120-nm n-channel transistors compared with transistors without the hydrogen anneal. The value of drive current achieved is 250 ?A/?m, which is a record for thick pillar vertical MOSFETs. This improved performance is obtained even though a sacrificial oxidation was performed prior to the hydrogen anneal to smooth the pillar sidewall. The values of subthreshold slope and DIBL are 79 mV/decade and 45 mV/V, respectively, which are significantly better than most values reported in the literature for comparable devices. The H2 anneal is also shown to decrease the OFF-state leakage current by a factor of three
    • 

    corecore