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SUMMARY 

The Boundary Force Method (BFM) was formulated for the two-dimensional 

stress analysis of complex crack configurations. In this method, only the 

boundaries of the region of interest are modeled. The boundaries are divided 

into a finite number of straight-line segments, and at the center of each 

segment, concentrated forces and a moment are applied. This set of unknown 

forces and moments are calculated to satisfy the prescribed boundary conditions 

of the problem. The elasticity solution for the stress distribution due to 

concentrated forces and a moment applied at an arbitrary point in a cracked 

infinite plate are used as the fundamental solution. Thus, the crack need not be 

modeled as part of the boundary. 

The formulation of the BFM is described and the accuracy of the method is 

established by analyzing several crack configurations for which accepted stress­

intensity factor solutions are known. The crack configurations investigated 

include mode I and mixed mode (mode I and II) problems. The results obtained 

are, in general, within ±O.5 percent of accurate numerical solutions. 

The versatility of the method is demonstrated through the analysis of 

complex crack configurations for which limited or no solutions are known. 

INTRODUCTION 

Damage tolerant design criteria for structural members require the ability 

to predict crack-growth rates and fracture strengths. In these predictions, 

stress-intensity factors are the most important parameters. Therefore, for 

accurate predictions, accurate stress-intensity factors are needed. 

In two-dimensional analyses, many methods have been used to determine 

stress concentration factors for holes or notches and stress-intensity factors 



for cracks. Three of the most popular numerical methods are the Finite Element 

Method (FEM), the Boundary Collocation Method and the Boundary Element Method 

(BEM). 

The FEM has enjoyed wide-spread use in the last three decades. However, in 

the field of fracture mechanics, FEM is cumbersome to use. In the finite element 

approach, relatively large numbers of elements are needed to accurately model 

the crack region and, for complex configurations with cracks and notches, the 

number of elements needed to accurately model these problems can be extremely 

large. (Thus, a correspondingly large effort is required to construct such a 

model.) Moreover, in crack-growth-rate predictions, stress-intensity factors 

must be found for various crack lengths. Since a new mesh must be generated for 

each new crack length to accurately model the crack tip, a large amount of time 

is needed in the FEM for modeling. 

In the collocation method, only the boundaries of the region of interest 

need to be modeled. Compared to the FEM, where the entire region must be 

modeled, the collocation method presents an attractive alternative. In this 

technique however, the basic stress functions need to be changed for different 

classes of problems. Therefore in the collocation method, a large amount of time 

can be spent in developing and formulating new stress functions for each class 

of problems. 

With the BEM, only the boundaries of the region of interest are modeled. 

The boundaries are discretized into a series of line segments. In this paper, a 

more general method, the Boundary Force Method (BFM), is formulated. The BFM is 

a form of an indirect BEM that models only the boundaries as in the collocation 

method, but does not require different stress functions for different classes of 
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problems. Before presenting the details of the BFM, a brief description of 

previous work in indirect boundary element methods related to the BFM is 

presented. 

One of the earliest indirect formulations of BEM by Nisitani [1] was 

called the "body force" method. In his method, the unknowns were constant 

body force densities in the x- and y-directions applied on each segment of the 

discretized boundaries. The boundary conditions were satisfied in terms of 

tractions. For cracked bodies, the crack was also modeled as a very slender 

elliptical notch [2-4]. 

Isida [5] improved on the accuracy of the body force method by satisfying 

the boundary conditions in terms of resultant forces. The unknowns in his 

technique were the body force densities in the x- and y-directions on each 

segment of the discretized boundaries. Again, cracks were modeled as very 

slender elliptical notches. 

Erdogan and Arin [6] introduced a boundary method to analyze an elastic 

domain containing a crack. The stress-free conditions on the crack faces were 

satisfied exactly by using the analytical solution for concentrated forces in an 

infinite plate with a crack. Thus, the crack faces did not have to be modeled. 

The unknowns in this analysis were the concentrated forces in the x- and y­

directions applied again on the boundaries. 

In the present BFM, the stress-free conditions on the crack faces are 

exactly satisfied by using Erdogan's analytical solution for concentrated forces 

and a moment in an infinite plate with a crack [7], thus, eliminating the need 

to model the crack. The unknowns in the BFM are the concentrated forces in the 

x- and y-directions and a moment on each segment of the discretized boundaries. 

Briefly, the essential differences among the methods of Nisitani [1], Isida 

[5], Erdogan and Arin [6] and the present BFM can be grouped in three 
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categories: the fundamental solutions, the treatment of the boundary 

conditions, and the treatment of the crack faces. These techniques and their 

differences are summarized in Table 1. 

In this paper, first the formulation of the BFM is presented and the 

fundamental solution is briefly reviewed. Studies were performed on a center 

cracked and a single-edge cracked specimen to investigate the rate of 

convergence of the BFM. The accuracy of the BFM was established by analyzing 

crack configurations for which accurate numerical solutions are known. These 

were a crack between two circular holes in an infinite plate and a slant single­

edge crack in a finite plate subjected to uniaxial tension. To demonstrate the 

versatility and "ease of use", the BFM was also used to obtain stress-intensity 

factor solutions for two crack configurations for which very limited or no 

solutions are available. These were a crack emanating from an semi-circular 

edge notch and a four-hole cracked specimen subjected to uniaxial tension. 
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LIST OF SYMBOLS 

crack length or one-half crack length 

resultant couple 

Young's modulus 

influence coefficient matrix 

resultant forces in the x- and y-directions, respectively 

height and width of rectangular plates, respectively 

stress-intensity factor 

length of segment i 

concentrated moment 

number of segments 

unit loads and moment on the ith segment 

concentrated forces in the y- and x-directions, respectively 
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vector of unknown forces and moments 

externally applied load vector 

remote applied stress 

displacements in the x- and y-directions, respectively 

Cartesian coordinates 

complex variable, z ~ x + iy 

location of forces and moment, Zo 

angle of inclination of crack 

material constant: 3-4v for plane strain 
(3-v)/(1+v) for plane stress 

projection of sub-arc onto the x- and y-axes, respectively 

shear modulus 

Poisson's ratio 

Cartesian stresses 

normal and shear stresses on the boundary 

Cartesian strains 

complex stress functions 

ANALYSIS 

In this section, first the formulation of the BFM is presented. Next, the 

fundamental solution for concentrated forces and a moment at an arbitrary point 

in an infinite plate is summarized. Then a simple and useful numerical method 

for evaluating some of the influence coefficients is presented. 

Formulation 

The Boundary Force Method (BFM) is a numerical technique which uses the 

superposition of a finite number of sets of concentrated forces and moments in 

an infinite plate to obtain the solution to the boundary-value problem of 

interest. 

5 



The BFM uses the elasticity solution for concentrated forces and a moment 

in an infinite plate as the fundamental solution. For plates without a crack, 

Muskhelishvili's solution [9] for a pair of concentrated forces Q, P and a 

moment M in an infinite plate is used as the fundamental solution. For a 

plate with a crack, Erdogan's solution [7] for a pair of concentrated forces Q, 

P and a moment M in an infinite plate with a crack is used as the fundamental 

solution. With Erdogan's solution [7] the crack faces need not be modeled as 

part of the boundary since the stress-free conditions on the crack faces are 

exactly satisfied. 

Because the fundamental solution satisfies all the equations of elasticity 

in the interior, the only remaining conditions to be satisfied are the 

conditions on the boundary. The given boundary conditions are satisfied by 

applying sets of concentrated forces and moments along an "imaginary" boundary 

traced on an infinite plate, corresponding to the actual configuration. The 

imaginary boundary is discretized into a number of segments. At the center of 

each segment, a pair of concentrated forces and a moment are applied at a small 

distance 0 away from the imaginary boundary. The magnitudes of the forces and 

moment on each segment are determined to approximately satisfy the boundary 

conditions. 

To illustrate the method, consider the problem of a finite plate with a 

crack subjected to uniaxial tension as shown in Figure 1. The solution to this 

problem is obtained by the superposition of concentrated forces and moments in 

an infinite plate with a crack as shown in Figure 2. The dashed lines in Figure 

2 correspond to the imaginary boundary of the plate shown in Figure 1. 

The first step in the BFM is to discretize the imaginary boundary into a 

finite number of segments. As an example, Figure 2 shows an idealization of 16 

segments (4 in each quadrant) on the imaginary boundary. On each segment i, a 
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concentrated force pair Pi' Qi and a moment Mi are applied at a small 

distance 0i on the outward normal from the mid-point of the segment. The 

distance 0i was chosen to be one-fourth of the length of the segment i. This 

offset was used to eliminate the stress singularities in the computation of the 

stresses on the boundaries. 

The concentrated forces Pi' Qi and moment Mi on the ith segment 

create resultant forces R 
Xj 

in the x-direction and R in the y-direction, 
Yj 

and a resultant couple c. on the jth segment. Thus, the resultant forces and 
J 

couple for segment j due to the forces and moments on all segments are 

16 
R L (F P. + F Q. + F M) x. i=1 XjPi 1 xjqi 1 x .m. i 

J J 1 

16 
R L (F P. + F Q. + F M.) 

Yj i=1 YjPi 1 yjqi 1 yjmi 1 

16 
c. L (C. Pi + C. Q. + C. M.) 
J i=1 JPi Jqi 1 Jmi 1 

Here F ,F ,C., etc. are called influence coefficients and are defined 
xjPi YjPi JPi 

as follows: 

force in the x-direction created on the jth segment due 

to unit load 

segment 
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th force in the y-direction created on the j segment due 

to unit load Pi acting in the y-direction on the ith 

segment 

C It t I t d th .th resu an coup e crea e on e J segment due to unit 
jpi 

load th Pi acting in the y-direction on the i segment 

with similar definitions for F , x
j

q
i 

The resultant forces and couples are assumed to act at the center of the 

corresponding segments. The resultants on all segments can then be written as 

{R}48x' (1) 

where [F] is the "influence coefficient" matrix, {p} is the vector of 

unknown forces and moments, and {R} is the vector of externally applied 

resultant forces and moments. The influence coefficient matrix [F] can be 

expressed as 

F F F F F F 
x,P, x,P'6 x,q, x,q'6 x,m, x,m'6 

F F F F F F 
y, P, Y,P'6 y,q, y,q'6 y, m, y,m'6 

C , P, C 
'P,6 

C 
' q, 

C 
'q,6 

C 
' m, 

C 
, m'6 

[F] = (2) 

F F I F F I F F 
x'6P, x,6P,6 x'6q, x,6Q,6 x'6m, x,6m,6 

F F I F F I F F 
Y'6P, y,6P,6 Y'6Q, y,6Q,6 Y'6m, y,6m,6 

C ,6p, C 
,6p,6 I c ,6Q, c 

,6q,6 I c 
'6m, 

C 
,6m,6 
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The coefficient matrix [F] is fully populated and non-symmetric. 

The external loading on the plate boundaries (uniform stress S in the y-

direction at y = ±H/2, see Figure 1) can be replaced with concentrated forces 

equal to SLk , where Lk is the length of the kth segment as shown in Figure 3. 

The forces in the x-direction and the moment on these boundaries are zero. The 

force pair and moment acting on each segment of the boundaries x = ±W/2 are also 

zero since these boundaries are stress free. This set of concentrated force 

pairs and moments forms the load vector {R} on the right-hand side of equation 

(1) and can be written as 

{R} {R ,R ,C1 , . • • • • R , 
xl Yl x16 

{R} {a, a, a, ... SL
3

, •.. SL
14

, ••• a, a} 

where R x. 
1 

total force in x-direction on the 

tractions 

th i segment due to the external 

R total force in y-direction on the ith segment due to the external 
Yi 

tractions 

C
i 

total moment on the ith segment due to the external tractions 

Because the influence coefficient matrix [F] and the external applied load 

vector {R} are known, the unknown force and moment vector {PI can be 

obtained by solving the system of linear algebraic simultaneous equations. This 

set of forces and M., acting on the imaginary boundary in the 
1 

infinite plate (see Figure 2), will approximately satisfy the specified boundary 

conditions. Therefore, the stress state within the region bounded by the 
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imaginary boundary is approximately equal to the stress state in the interior of 

the finite cracked plate. The stresses and displacements at any pOint within 

the plate and the stress-intensity factors at the crack tips can be computed 

with the system of forces Pi' Qi and moment Mi (i = 1 to 16). A more 

detailed formulation of the BFM and the advantages of considering symmetry are 

given in [10]. 

Fundamental Solution 

The BFM formulation uses the elasticity solution for a pair of concentrated 

forces and a moment in an infinite plate with a crack. Such a solution was 

formulated by Erdogan [7] for linear, isotropic and homogeneous materials. The 

solution is presented in Appendix A. 

Influence Coefficient Calculations 

The influence coefficients in equation (2) are the resultant forces and 

moment on segment j due to unit forces and moment applied to segment i and are 

calculated using numerical integration of stresses given in equation (A.2). 

While the force resultants on the jth segment due to unit loads Pi' qi and 

moment mi on the ith segment are easily obtained in closed form from equation 

(A.4), the moment resultants C. ,C. 
JPi Jqi 

and C. 
Jm i 

caused some difficulty, since 

the resultant moment terms Cj ,C. and C. can be obtained in closed form 
Pi Jqi Jm i 

only by double integrations of the stress functions. However, after the first 

integration, the resulting functions consist of a long series of multivalued 

terms. Hence, a second integration of these functions would be unwieldy and 

cumbersome, if not impractical. For this reason, the resultant moment C, 

created by concentrated forces and moment in an infinite plate, is approximated 

by dividing each segment into two or more parts, and computing the resultant 
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forces on each subdivision. These resultant forces are then multiplied by the 

corresponding moment arm about the center of the segment. For example, consider 

a unit load acting at in an infinite plate as shown in Figure 4. The 

segment j, between z, and z2' is divided into two parts (k =, and 2). 

The resultant forces created by the unit load P, at zo' along each sub-arc 

k, are Fk 
xjP, 

and Fk in the y/, x- and y-directions, respectively. Thus, the 

resultant couple C. across the jth 
JP, 

segment between z, and z2' due to the 

unit load P" is 

2 

L 
k=' 

where the influence coefficients F and F were defined above and the 
xjP, y l, 

superscript k refers to the kth subdivision. The terms 

A~ x-distance 
J 

of the jth 

A~ y-distance 
J 

of the . th 
J 

as shown in Figure 4. 

The resultant couples 

from the center of the kth subdivision to the center 

segment 

from the center of the kth subdivision to the center 

segment 

and C. ,due to unit load force 
Jm i 

and 

unit moment can be obtained in a similar fashion. 

The accuracy of the coefficients increases as the number of the 

subdivisions k becomes large. From numerical convergence studies on several 

C. ,C. and C. coefficients, a value of k = 4 was found to be sufficient 
JPi JQ i Jmi 
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in most cases. This numerical procedure simplified the computations 

considerably and reduced the tedious integrations and cumbersome algebraic 

manipulations. 

RESULTS AND DISCUSSION 

First, the accuracy of the BFM is compared with some other boundary 

methods, where only forces are used as the unknowns, and the convergence 

characteristics of the BFM are studied by applying the method to two standard 

crack configurations. Then the BFM is used to analyze mode I and mixed mode 

problems for which accurate solutions are available in the literature. Finally, 

the method is used to obtain stress-intensity factor solutions for complex crack 

configurations for which no solutions are available. 

Accuracy and Convergence Studies 

In previous boundary methods [1-6], the boundary conditions were satisfied 

in terms of tractions or resultant forces alone. In the BFM, the boundary 

conditions are satisfied in terms of resultant forces and moments. The BFM, 

therefore, has an additional degree of freedom per segment compared to previous 

boundary methods. To compare the accuracy obtained by satisfying the boundary 

conditions in terms of resultant forces and moments to that of resultant forces 

only, a simple configuration was analyzed using the two methods. A center 

cracked plate with a long crack (2a/W = 0.8) was analyzed. Because of symmetry 

in the problem, only one quarter of the plate was modeled using equal size 

segments. The relative error in the stress-intensity factors is used for 

comparison, where the relative error is defined as 

Relative error 
Kcomputed 

K ref 

12 

ref - K I 



Kcomputed is the stress-intensity factor computed by either method and Kref is 

the reference value taken from the literature. 

Figure 5 presents the relative error as a function of the number of degrees 

of freedom used in the modeling. For the same number of degrees of freedom, the 

method that includes the moments as unknowns (BFM) yields a solution which is 

more accurate than the method where only forces are used as unknowns. The 

improved accuracy can be attributed to better satisfaction of the boundary 

conditions when the moment is included. Thus, the BFM is expected to yield a 

more accurate solution and also have a faster convergence rate than methods 

where only forces are used. In the above example, the present method yields a 

very accurate solution (within 1% of the reference solution) with as few as 24 

degrees of freedom. 

Next, the convergence of the BFM is studied by increasing the number of 

segments in the idealization. The two problems used, for which very accurate 

solutions are available, were a center cracked specimen and a single edge 

cracked specimen. As before, the relative error in the stress-intensity factor 

is used as the convergence parameter. 

For the case of the center-crack tension specimen subjected to uniaxial 

tension as shown in Figure 6, two extreme crack-Iength-to-width ratios, 2a/W 

0.2 and 0.8, were considered. Because of symmetry, only one quarter of the 

plate was modeled. Again, equal size segments were used in the models. The 

relative error in the stress-intensity factors as a function of the number of 

degrees of freedom is presented in Figure 6. For the small crack (2a/W = 0.2), 

the solution converged much faster than for the large crack length (2a/W 

0.8). This trend shows the effects of the external boundaries on the stress­

intensity factor. In both cases, as few as 36 degrees of freedom are sufficient 

to yield a very accurate solution. 
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Figure 7 shows the convergence of the relative error for the single edge 

crack specimen subjected to uniaxial tension. Again for this configuration, two 

extreme crack-Iength-to-width ratios, a/W of 0.2 and 0.6, were considered. 

Because of symmetry, only the top half of the plate was modeled. Equal size 

segments were used on the boundaries. For the short crack (a/W = 0.2), the 

rate of convergence of the solution is somewhat faster than that for the long 

crack (a/W = 0.6). For both crack lengths about 72 degrees of freedom are 

sufficient to yield a very accurate solution (within 1 percent of the reference 

solution of [11]). 

For the two crack configurations just discussed, equal size boundary 

segments were used. However, modeling with equal size segments is usually not 

optimal. Large segments could be used in those regions where the stress 

gradients are not severe while small segments could be used where the stress 

gradients are severe. Such a graded model could yield solutions which are more 

accurate with fewer segments than a model with equal size segments. To 

construct such graded models, a radial-line method for generating the mesh 

points on the boundaries was developed and is presented in Appendix B. Using a 

model generated by the radial-line method, a very accurate solution can be found 

for considerably fewer degrees of freedom [10]. 

Comparisons With Other Solutions 

To establish the accuracy of the BFM" several complex crack configurations 

for which accurate solutions are available in the literature were analyzed. 

These configurations can be divided into two categories: opening mode (mode I) 

problems and mixed mode (mode I and mode II) problems. For both the mode I and 

mixed mode problems, the radial-line method (see Appendix B) was used to 

generate the mesh points with the origin of the radial-lines chosen to be at the 

crack tip. A value of 10 was used for the dividing factor DF. 
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Mode I problems. Consider a large plate (H/R = W/R = 64) with a crack 

located between two circular holes as shown in Figure 8. The plate is subjected 

to remote, uniaxial tension. Again, because of symmetry, only one quarter of 

the plate was modeled using about 40 segments (about 120 degrees of freedom). 

The stress-intensity correction factors for a range of crack-length-to-

hole-radius ratios are presented in Figure 8. Results calculated by Newman [12J 

for an infinite plate using the collocation technique are shown for comparison. 

For all crack lengths considered, the agreement between the BFM results and the 

collocation results is excellent (within 1 percent). The small difference is 

probably due to the large, but finite plate used in the present analysis where 

an infinite plate was used in [12J. In Figure 8, the dashed line at unity 

represents the limiting solution as the d/R ratio approaches infinity. For 

larger crack lengths, aIR> 2.5, the influence of the holes is negligible. For 

small aIR values, the crack tips are shielded by the holes and thus the stress 

intensity factor is much lower than the solution for the plate without holes. 

Mixed mode problems. To demonstrate the validity of the BFM for mixed mode 

problems, the common mixed mode crack problem of a slant single edge crack in a 

finite plate subjected to uniaxial tension (see Figure 9) was analyzed. Because 

of lack of symmetries, the complete plate is modeled with 50 segments or 150 

degrees of freedom. 

Three angles of inclination, 000 B = 45 ,67.5 and 90 were considered. For 

each angle B, several a/W ratios were considered. Figures 9 and 10 present 

the mode I and mode II stress-intensity correction factors, respectively, for 

each of the cases considered. These stress-intensity correction factors are 

compared with the results obtained by Wilson using collocation techniques [llJ. 

The agreement between the present results and those obtained by Wilson are 
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generally within 0.5 percent except for the mode II stress-intensity corrections 

factors for a/W = 0.6. For this case, the present results are within 1.5 

percent of Wilson's solution [llJ. 

New Solutions 

In this section, the BFM is applied to two configurations where few or no 

stress-intensity factor solutions are available, an edge crack emanating from a 

semi-circular hole and a four-hole crack specimen. The radial-line method was 

used to generate the mesh pOints on the boundaries and the crack tip was chosen 

as the origin of the radial lines. Again a value of 10 was used for the 

dividing factor DF. 

Edge crack emanating from a semi-circular hole. Figure 11 shows an edge 

crack emanating from a semi-circular hole. Very few solutions for the range of 

crack lengths considered here are available in the literature. Thus, the 

solutions given below will add considerably to the available solutions for this 

crack configuration. 

Due to symmetry, only the upper half of the plate was modeled. The stress­

intensity correction factors obtained for three values of notch-depth-to-width 

ratio (R/W = 0.25, 0.125 and 0.0625) are presented in Table 2 and Figure 11. In 

each case, the notch radius R was held constant and the value of W was increased 

to obtain the desired R/W ratio. For each Riw ratio, the crack length was 

varied from about 5 to 50 percent of the plate width. For short cracks, the 

notch boundary had a significant influence on the stress-intensity factor. 

However, as the crack tip approached the mid-section of the plate, the stress­

intensity factor approached the solution for an edge crack without the notch. 

Thus, the notch boundary had no influence on the stress-intensity factor when 

the crack is half-way through the plate as shown in Table 2. 
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Four-hole crack specimen. Stringers are widely used in aircraft structures 

as stiffening members to retard or arrest propagating cracks. The four-hole 

crack specimen shown in Figure 12, which simulates the effect of a stringer on a 

propagating crack, was analyzed. Due to symmetry, only one quarter of the 

specimen was modeled. 

The stress-intensity correction factors obtained for a range of crack 

length-to-width ratios (0 < a/W < 0.9) are presented in Table 3 and Figure 12. 

The solution for a similar specimen with no holes (a center-crack tension 

specimen) is also shown in Figure 12 for comparison. The results for the four­

hole specimen show that the stress-intensity factor increases (higher than for 

the center-crack specimen) as the crack tip approaches the inner edge of the 

hole. However, as the crack tip approaches the center-line of the holes, the 

stress-intensity factor decreases (lower than for the center-crack specimen) 

until a minimum value is obtained at about a/W = 0.55. Thus, a propagating 

crack will be retarded or arrested as it approaches the center-line of the 

holes. This drop in the stress-intensity factor is due to the shielding of the 

crack tip by the holes from the externally applied stress field. 

CONCLUDING REMARKS 

The Boundary Force Method (BFM) was formulated for the two-dimensional 

analysis of complex crack configurations. In this method, the boundaries of the 

crack configuration were modeled by straight-line segments. At the center of 

each of the segments, a horizontal force, a vertical force and a moment were 

applied. These sets of forces and moments are treated as the unknowns in the 

problem. These unknowns are determined such that the boundary conditions are 

satisfied approximately along the boundaries of the configuration. The BFM uses 

the fundamental elasticity solution of a pair of concentrated forces and a 
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moment at an arbitrary point in an infinite plate with a crack. Therefore, the 

boundary conditions on the crack faces are satisfied exactly and, hence, the 

crack faces are not modeled as part of the boundary as in previous boundary 

element methods. 

To verify the accuracy of the method, the BFM was used to analyze several 

crack configurations for which exact or accurate stress-intensity factor 

solutions are available in the literature. The crack configurations considered 

included mode I and mixed mode (mode I & II) problems. The method yielded 

stress-intensity factors which were in excellent agreement with those in the 

literature for both the mode I and mixed mode problems. Results showed that for 

the same degree of accuracy, significantly fewer degrees of freedom were 

required in the BFM with unknown forces and moments compared to unknown forces 

only. In general, about 150 degrees of freedom were required to obtain very 

accurate solutions to complex crack configurations with the BFM with unknown 

forces and moments. 

The versatility of the BFM was demonstrated by analyzing two complex crack 

configurations for which limited or no solutions are available, an edge crack 

emanating from a semi-circular hole and the four-hole crack specimen. For each 

configuration, several crack length-to-width ratios were analyzed and stress­

intensity factors are presented. For each configuration, the stress-intensity 

factors for several crack lengths were obtained with minimal modeling effort 

since only the boundaries were modeled. 
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APPENDIX A - FUNDAMENTAL SOLUTION 

The BFM formulation uses the elasticity solution for a pair of concentrated 

forces and a moment in an infinite plate with a crack. Such a solution was 

formulated by Erdogan [7J for linear, isotropic and homogeneous materials. The 

solution is presented below. 

Stress Functions 

Consider an infinite plate with a crack subjected to concentrated forces 

Q, P and a moment M at an arbitrary point Zo = Xo + iyo as shown in Figure 

A.l. The complex variable stress functions [7J are 

* <P (z) 

S(Zo - z ) + im 
* KS 0 

+ <PO(z) II (z) + 
- 2 

z - Zo (z - zo) 

<Po(z) { z 
S [I(z) - I(ZO)J (A.1) 
- Zo 21Th 2_ a 2 

KS 
[I (z) - I( Zo) J 

z - Zo 

Hz) - I(zo) J(zo) 
- [ S(zo - z ) + im][ ]} 

0 - 2 (z - zo) z - Zo 

where M m = 21T 
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y 

Figure A.l - Concentrated loads and moment in an infinite plate with a crack. 
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J(zo) 1T[ 
Zo 

] - 1 

/Z2 - a2 
0 

S 
Q + iP 

21T ( 1 + K) 

Stresses 

The stresses at any pOint, Z = x + iy, are obtained from the stress 

functions.as 

* -*--
2[<1> (z) + <I> (z)] 

- *, *'-* o - 0 + i20 
Y x xy 

2[(z - z)<I> (z) - <I> (z) + 0 (z)] (A.2) 

where the barred quantities are the complex conjugates and the primed quantities 

represent the derivatives with respect to z. From equations (A.l) and (A.2), 

the stresses are singular at the concentrated load, that is, the stresses become 

infinite as z approaches z00 In addition, the stresses also become infinite 

as z approaches fa, the stresses have the required square root singularity at 

the crack tips, and the stresses vanish as r ~ ~ • 

Displacements, Forces and Moments 

The displacements u and v at any point, z = x + iy, are obtained from the 

stress functions as 

(A.3) 
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where ~ is the shear modulus. The resultant forces Fx ' Fy and the resultant 

moment Mo across the arc zl to z2 (see Figure A.l) due to the concentrated 

forces (Q, P) and moment M can be obtained either by integrating the stresses 

in equation (A.2) from zl to z2' or by using the stress functions in the the 

following equations: 

F + iF 
x y 

* . *- - -*--
-i[f~ (z)dz + fn (z)dz + (z - z) ~ (z)] (A. 4) 

M He [ff{~(z) + O(z)}dzdz - z f{~(z) + O(z)}dz 
o 

(A.5) 

Stress-Intensity Factor 

The stress intensity factors for concentrated forces Q and P and moment M 

applied at an arbitrary point, Zo = Xo + iyo' in an infinite plate with a crack 

(see Figure A.l) are 

K 2/2; lim [/(z - a) ~*(z)] 
z-'a 

(A.6) 

a[(Q - iP)(zo - zo) + 1(1 + K)M] 
+ --------------------------------
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APPENDIX B - RADIAL LINE METHOD 

This appendix describes a systematic procedure, called the radial-line 

method, for modeling the boundaries of a crack configuration. In the BFM, the 

accuracy of the stress-intensity factor obtained depends on how well the 

boundary conditions are approximated. Because the boundaries near the crack tip 

are subjected to higher stress gradients than the boundaries far from the crack 

tip, smaller segments are needed to accurately model the boundary conditions 

near the crack tip. Therefore, a radial-line method that will generate smaller 

line segments on the boundaries near the crack tip and larger line segments on 

the boundaries away from the crack tip was developed. With the radial-line 

method of modeling, a significant reduction in the number of degrees of freedom 

is realized without sacrificing accuracy. This procedure can be best described 

using the following example. 

Consider a center-crack tension specimen with a crack length 2a as shown in 

Figure B.l. Because of symmetry, only one quarter of the plate needs to be 

modeled. The boundary of this quadrant can be divided into two sections: 

Boundary 1 - the vertical line A to B and Boundary 2 - the horizontal line B 

to C. Because the stress-intensity factor is the quantity of interest here, 

let the crack tip at x = a be the point from which all radial lines originate. 

To determine the segment sizes on Boundary 1, first the distance between the 

origin of the radial lines (the crack tip) and the starting point zl (point A) 

is computed. Label this distance The size of the first segment (zl to 

z2) is chosen to be a fraction of the distance r,. Thus, the distance from z, 

to z2 is set equal to r,/DF where DF is referred to as the dividing factor. 

Because the factor DF is assumed to be known, the distance to point z2 can be 

determined. Next, r 2 the distance from the origin of the radial lines (the 

crack tip) to z2 is computed. The size of the second segment, z2 to z3' is 
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Figure B.l - Radial-line method for generating mesh points. 
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a fraction of the distance r 2 , so that the size of the second segment is equal 

to r 2/0F. The dividing factor DF is assumed to be identical throughout the 

entire modeling. This procedure is repeated until the entire Boundary 1 is 

discretized. The procedure has to be modified near the end pOints, such as 

point B in Figure B.l. If the end point of the last segment exceeds the end 

pOint of the boundary (point B), the end point of the boundary is assigned as 

the end pOint of the last segment on that boundary. The same radial-line 

procedure is repeated for Boundary 2 where the starting point of Boundary 2 is 

the end point of Boundary 1. 

In the radial-line method, the size of the segments or the distribution 

density of the segments is determined by the choice of the origin of the radial 

line and the value of the dividing factor OF. Both can be chosen arbitrarily. 

In all the problems investigated in this paper, the origin of the radial-line 

was chosen to be the crack tip, since the stress-intensity factor is the 

quantity of interest. A OF value of 10 was used in all the problems. 

The most significant advantage of the radial-line method can be 

demonstrated in the case of a very small crack emanating from a semi-circular 

notch. Because of the high stress gradient near the crack tip, small segments 

are needed on portions of the semi-circular boundary nearest the crack tip (see 

Figure 12). If equal size segments are used, a large number of segments are 

needed on this curved boundary. However, the portion of the curved boundary 

that is away from the crack tip does not have high stress gradients and so small 

size segments on that portion of the boundary are unnecessary. The radial-line 
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method generates small segments near the crack tip and large segments away from 

the crack tip. This type of modeling will significantly reduce the number of 

degrees of freedom necessary to model the curve boundary without sacrificing 

accuracy. 
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Table 1 - Comparison of various indirect boundary element techniques. 

Investi­
gator 

[Ref.] 

Nisitani 
[1] 

Isida 
[5] 

Erdogan 
and Arin 

[6] 

Present 
Method 

Fundamental Solutions Used 

Without Crack With Crack 

T1moshenko's 
solution [8] 
for point 
load in an 
infinite 
plate 

Kolosov­
Muskhelish­
vili 
solution [9] 
for point 
loads in an 
infinite 
plate 

Kolosov­
Muskhelish­
vili 
solution [9] 
for point 
loads 1n an 
infinite 
plate 

Kolosov­
Muskhelish­
vili 
solut1on[9] 
for point 
loads in an 
infinite 
plate 

Same as 
without 
crack 

Same as 
wi thout 
crack 

Erdogan's 
solution 
[7] for 
point loads 
in an infi­
nite plate 
with a crack 

Erdogan's [7] 
solution for 
point loads 
in an inf1n­
n1te plate 
with a crack 

28 

Treatment 
of 

Crack Faces 

Modeled as 
a very slen­
der ellipti­
cal notch 
b/a ~ 0, b= 
minor axis, 
a=major axis 

Modeled as 
a very slen­
der ellipti­
cal notch 
b/a ~ 0 

No modeling 
of the crack 
faces needed 

No modeling 
of the crack 
faces needed 

Treatment of 
Boundary 

Conditions (BC) 

Be are satis­
fied in terms of 
stresses 

Be are satis­
fied in terms 
of resultant 
forces 

Be are 
satisfied in 
terms of 
resultant 
forces 

BC are satis­
fied in terms 
of resultant 
forces and mo­
ment 



Table 2 - Stress-intensity correction factors for an edge crack emanating 
from a semi-circular hole. 

aiR Fr(R/W -= .25) Fr(R/W -= .125) Fr(R/W -= .0625) 

1.04 .8860 .6937 .6431 

1.05 .9709 .7612 .7018 

1.06 1.0392 .8125 .7527 

1.08 1 .1531 .8995 .8322 

1.10 1 .2468 .9665 .8929 

1.15 1 .4068 1 .0819 .9951 

1.20 1.5259 1.1546 1.0568 

1.30 1 .6946 1 .2410 1 .1234 

1.50 1 .9648 1 .3319 1.1751 

1. 75 2.3356 1 .4144 1 .1993 

2.00 2.8183(a) 1.5006 1 .2273 

3.00 ------ 1.9802 1 .3390 

4.00 ------ 2.8189(a) 1 .4982 

6.00 ------ ------ 1 .4982 

8.00 ------ ------ 2.8200(a) 

(a) These values correspond to an a/W ratio of 0.5. 

(b) Fr for single edge crack with a/W -= 0.5 is 2.8153 [11]. 
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Table 3 - Stress-intensity correction factors for four-hole crack specimen. 

a/W Fr 

o. 1 .169 

.05 1 .174 

.10 1 • 1 91 

.15 1.222 

.20 1 .268 

.25 1.332 

.30 1 .409 

.35 1.480 

.375 1.498 

.40 1.489 

.425 1 .446 

.45 1 .361 

.475 1 .242 

.50 1 .108 

.525 0.989 

.55 0.917 

.575 0.904 

.60 0.946 

.65 1 .127 

.70 1.342 

.75 1 .558 

.80 1.795 

.85 2.105 

.90 2.599 
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Figure 1 - Crack in finite plate subjected to unaxial tension. 
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Figure 2 - Superposition of unknown forces Pi' Qi and moment Mi on sixteen 
boundary segments (i = 1 to 16). 

32 



, y 

SL
6t 

SL5 t t SL4 
t

SL3 

, 

H 
~2a~ 

. x 

W ~ -~ 

Figure 3 - Replacements of tractions by concentrated forces. 
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Figure 4 - Subdivision of a segment. 
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Figure 5 - Relative error in stresS-intensity factor using either "force and 
moment" method or "force" method 
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Figure 6 - Convergence of relative error in stress-intensity factor for center­
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Figure 8 - Comparison of stress-intensity correction factors for a crack located 
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Figure 11 - Stress-intensity correction factors for an edge crack emanating from 
a semi-circular hole. 
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