1,454 research outputs found

    Spider-silk inspired polymeric networks by harnessing the mechanical potential of β-sheets through network guided assembly.

    Get PDF
    The high toughness of natural spider-silk is attributed to their unique β-sheet secondary structures. However, the preparation of mechanically strong β-sheet rich materials remains a significant challenge due to challenges involved in processing the polymers/proteins, and managing the assembly of the hydrophobic residues. Inspired by spider-silk, our approach effectively utilizes the superior mechanical toughness and stability afforded by localised β-sheet domains within an amorphous network. Using a grafting-from polymerisation approach within an amorphous hydrophilic network allows for spatially controlled growth of poly(valine) and poly(valine-r-glycine) as β-sheet forming polypeptides via N-carboxyanhydride ring opening polymerisation. The resulting continuous β-sheet nanocrystal network exhibits improved compressive strength and stiffness over the initial network lacking β-sheets of up to 30 MPa (300 times greater than the initial network) and 6 MPa (100 times greater than the initial network) respectively. The network demonstrates improved resistance to strong acid, base and protein denaturants over 28 days

    An Advanced Microstructural and Electrochemical Datasheet on 18650 Li-Ion Batteries with Nickel-Rich NMC811 Cathodes and Graphite-Silicon Anodes

    Get PDF
    Cylindrical lithium-ion batteries are used across a wide range of applications from spacesuits to automotive vehicles. Specifically, many manufacturers are producing cells in the 18650 geometry i.e. a steel cylinder of diameter and length ca. 18 and 65 mm, respectively. One example is the LG Chem INR18650 MJ1 (nominal values: 3.5 Ah, 3.6 V, 12.2 Wh). This article describes the electrochemical performance and microstructural assembly of such cells, where all the under-pinning data is made openly available for the benefit of the wider community. The charge-discharge capacity is reported for 400 operational cycles via the manufacturer's guidelines along with full-cell, individual electrode coating and particle 3D imaging. Within the electrochemical data, the distinction between protocol transition, beginning-of-life (BoL) capacity loss, and prolonged degradation is outlined and, subsequently, each aspect of the microstructural characterization is broken down into key metrics that may aid in understanding such degradation (e.g. electrode assembly layers, coating thickness, areal loading, particle size and shape). All key information is summarized in a quick-access advanced datasheet in order to provide an initial baseline of information to guide research paths, inform experiments and aid computational modellers

    Data for an Advanced Microstructural and Electrochemical Datasheet on 18650 Li-ion Batteries with Nickel-Rich NMC811 Cathodes and Graphite-Silicon Anodes

    Get PDF
    The data presented here were collected from a commercial LG Chem cylindrical INR18650 MJ1 lithium-ion (Li-ion) battery (approximate nominal specifications: 3.5 Ah, 3.6 V, 12.2 Wh). Electrochemical and microstructural information is presented, the latter collected across several length scales using X-ray computed tomography (CT): from cell to particle. One cell-level tomogram, four assembly-level and two electrode/particle-level 3D datasets are available; all data was collected in the pristine state. The electrochemical data consists of the full current and voltage charge-discharge curves for 400 operational cycles. All data has been made freely available via a repository [10.5522/04/c.4994651] in order to aid in the development of improved computational models for commercially-relevant Li-ion battery materials

    Fundamental effective temperature measurements for eclipsing binary stars – II. The detached F-type eclipsing binary CPD-54 810

    Get PDF
    Abstract CPD-54 810 is a double-lined detached eclipsing binary containing two mid-F type dwarfs on an eccentric 26-day orbit. We perform a combined analysis of the extensive photometry obtained by the TESS space mission along with previously published observations to obtain a full orbital and physical solution for the system. We measure the following model-independent masses and radii: M1 = 1.3094 ± 0.0051 M⊙, M2 = 1.0896 ± 0.0034 M⊙, R1 = 1.9288 ± 0.0030 R⊙, and R2 = 1.1815 ± 0.0037 R⊙. We employ a Bayesian approach to obtain the bolometric flux for both stars from observed magnitudes, colours, and flux ratios. These bolometric fluxes combined with the stars’ angular diameters (from R1, R2 and the parallax from Gaia EDR3) lead directly to the stars’ effective temperatures: Teff, 1=6462 ± 43 K, and Teff, 2=6331 ± 43 K, with an additional systematic error of 0.8 per cent (13 K) from the uncertainty in the zero-point of the flux scale. Our results are robust against the choice of model spectra and other details of the analysis. CPD-54 810 is an ideal benchmark system that can be used to test stellar parameters measured by large spectroscopic surveys or derived from asteroseismology, and calibrate stellar models by providing robust constraints on the measured parameters. The methods presented here can be applied to many other detached eclipsing binary systems to build a catalogue of well–measured benchmark stars.</jats:p

    HATS-17b: A Transiting Compact Warm Jupiter in a 16.3 Days Circular Orbit

    Full text link
    We report the discovery of HATS-17b, the first transiting warm Jupiter of the HATSouth network. HATS-17b transits its bright (V=12.4) G-type (M⋆_{\star}=1.131 ±\pm 0.030 M⊙_{\odot}, R⋆_{\star}=1.091−0.046+0.070^{+0.070}_{-0.046} R⋆_{\star}) metal-rich ([Fe/H]=+0.3 dex) host star in a circular orbit with a period of P=16.2546 days. HATS-17b has a very compact radius of 0.777 ±\pm 0.056 RJ_J given its Jupiter-like mass of 1.338 ±\pm 0.065 MJ_J. Up to 50% of the mass of HATS-17b may be composed of heavy elements in order to explain its high density with current models of planetary structure. HATS-17b is the longest period transiting planet discovered to date by a ground-based photometric survey, and is one of the brightest transiting warm Jupiter systems known. The brightness of HATS-17b will allow detailed follow-up observations to characterize the orbital geometry of the system and the atmosphere of the planet.Comment: 12 page, 8 figures, submitted to A

    Pan-genomic perspective on the evolution of the Staphylococcus aureus USA300 epidemic.

    Get PDF
    Staphylococcus aureus USA300 represents the dominant community-associated methicillin-resistant S. aureus lineage in the USA, where it is a major cause of skin and soft tissue infections. Previous comparative genomic studies have described the population structure and evolution of USA300 based on geographically restricted isolate collections. Here, we investigated the USA300 population by sequencing genomes of a geographically distributed panel of 191 clinical S. aureus isolates belonging to clonal complex 8 (CC8), derived from the Tigecycline Evaluation and Surveillance Trial program. Isolates were collected at 12 healthcare centres across nine USA states in 2004, 2009 or 2010. Reconstruction of evolutionary relationships revealed that CC8 was dominated by USA300 isolates (154/191, 81 %), which were heterogeneous and demonstrated limited phylogeographic clustering. Analysis of the USA300 core genomes revealed an increase in median pairwise SNP distance from 62 to 98 between 2004 and 2010, with a stable pattern of above average dN/dS ratios. The phylogeny of the USA300 population indicated that early diversification events led to the formation of nested clades, which arose through cumulative acquisition of predominantly non-synonymous SNPs in various coding sequences. The accessory genome of USA300 was largely homogenous and consisted of elements previously associated with this lineage. We observed an emergence of SCCmec negative and ACME negative USA300 isolates amongst more recent samples, and an increase in the prevalence of ϕSa5 prophage. Together, the analysed S. aureus USA300 collection revealed an evolving pan-genome through increased core genome heterogeneity and temporal variation in the frequency of certain accessory elements

    Genome-wide saturation mutagenesis of Burkholderia pseudomallei K96243 predicts essential genes and novel targets for antimicrobial development

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Burkholderia pseudomallei is the causative agent of melioidosis, an often fatal infectious disease for which there is no vaccine. B. pseudomallei is listed as a tier 1 select agent, and as current therapeutic options are limited due to its natural resistance to most antibiotics, the development of new antimicrobial therapies is imperative. To identify drug targets and better understand the complex B. pseudomallei genome, we sought a genome-wide approach to identify lethal gene targets. As B. pseudomallei has an unusually large genome spread over two chromosomes, an extensive screen was required to achieve a comprehensive analysis. Here we describe transposon-directed insertion site sequencing (TraDIS) of a library of over 10(6) transposon insertion mutants, which provides the level of genome saturation required to identify essential genes. Using this technique, we have identified a set of 505 genes that are predicted to be essential in B. pseudomallei K96243. To validate our screen, three genes predicted to be essential, pyrH, accA, and sodB, and a gene predicted to be nonessential, bpss0370, were independently investigated through the generation of conditional mutants. The conditional mutants confirmed the TraDIS predictions, showing that we have generated a list of genes predicted to be essential and demonstrating that this technique can be used to analyze complex genomes and thus be more widely applied. IMPORTANCE: Burkholderia pseudomallei is a lethal human pathogen that is considered a potential bioterrorism threat and has limited treatment options due to an unusually high natural resistance to most antibiotics. We have identified a set of genes that are required for bacterial growth and thus are excellent candidates against which to develop potential novel antibiotics. To validate our approach, we constructed four mutants in which gene expression can be turned on and off conditionally to confirm that these genes are required for the bacteria to survive.This work was partially funded by the Defence Science and Technology Laboratories (DSTL)

    A covalently crosslinked bioink for multi-materials drop-on-demand 3D bioprinting of three-dimensional cell cultures

    Full text link
    In vitro three-dimensional (3D) cell models have been accepted to better recapitulate aspects of in vivo organ environment than 2D cell culture. Currently, the production of these complex in vitro 3D cell models with multiple cell types and microenvironments remains challenging and prone to human error. Here we report a versatile bioink comprised of a 4-arm PEG based polymer with distal maleimide derivatives as the main ink component and a bis-thiol species as the activator that crosslinks the polymer to form the hydrogel in less than a second. The rapid gelation makes the polymer system compatible with 3D bioprinting. The ink is combined with a drop-on-demand 3D bioprinting platform consisting of eight independently addressable nozzles and high-throughput printing logic for creating complex 3D cell culture models. The combination of multiple nozzles and fast printing logic enables the rapid preparation of many complex 3D structures comprising multiple hydrogel environments in the one structure in a standard 96-well plate format. The platform compatibility for biological applications was validated using pancreatic ductal adenocarcinoma cancer (PDAC) cells with their phenotypic responses controlled by tuning the hydrogel microenvironment
    • …
    corecore