37,415 research outputs found
Exciton and biexciton energies in bilayer systems
We report calculations of the energies of excitons and biexcitons in ideal
two-dimensional bilayer systems within the effective-mass approximation with
isotropic electron and hole masses. The exciton energies are obtained by a
simple numerical integration technique, while the biexciton energies are
obtained from diffusion quantum Monte Carlo calculations. The exciton binding
energy decays as the inverse of the separation of the layers, while the binding
energy of the biexciton with respect to dissociation into two separate excitons
decays exponentially
A heterotic sigma model with novel target geometry
We construct a (1,2) heterotic sigma model whose target space geometry
consists of a transitive Lie algebroid with complex structure on a Kaehler
manifold. We show that, under certain geometrical and topological conditions,
there are two distinguished topological half--twists of the heterotic sigma
model leading to A and B type half--topological models. Each of these models is
characterized by the usual topological BRST operator, stemming from the
heterotic (0,2) supersymmetry, and a second BRST operator anticommuting with
the former, originating from the (1,0) supersymmetry. These BRST operators
combined in a certain way provide each half--topological model with two
inequivalent BRST structures and, correspondingly, two distinct perturbative
chiral algebras and chiral rings. The latter are studied in detail and
characterized geometrically in terms of Lie algebroid cohomology in the
quasiclassical limit.Comment: 83 pages, no figures, 2 references adde
Noisy pre-processing facilitating a photonic realisation of device-independent quantum key distribution
Device-independent quantum key distribution provides security even when the
equipment used to communicate over the quantum channel is largely
uncharacterized. An experimental demonstration of device-independent quantum
key distribution is however challenging. A central obstacle in photonic
implementations is that the global detection efficiency, i.e., the probability
that the signals sent over the quantum channel are successfully received, must
be above a certain threshold. We here propose a method to significantly relax
this threshold, while maintaining provable device-independent security. This is
achieved with a protocol that adds artificial noise, which cannot be known or
controlled by an adversary, to the initial measurement data (the raw key).
Focusing on a realistic photonic setup using a source based on spontaneous
parametric down conversion, we give explicit bounds on the minimal required
global detection efficiency.Comment: 5+16 pages, 4 figure
Using imperfect advance demand information in ordering and rationing decisions
Cataloged from PDF version of article.In this paper, we consider an inventory problem with two demand classes having different priorities. The appropriate policy of rationing the available stock, i.e. reserving some stock for meeting prospective future demand of preferred customers at the expense of deliberately losing some of the currently materialized demand of lower demand class(es), relies on the estimation of the future demand. Utilizing current signals on future demand, which we refer to as imperfect advance demand information (ADI), decreases uncertainty on future demand and may help to make better decisions on when to start rejecting lower class demand. We develop a model that incorporates imperfect ADI with inventory ordering (replenishment) decision and rationing available stock. In a two-period setting, we show some structural properties, solve the rationing problem, and propose solution methods based on Monte Carlo simulation for the ordering problem. We conduct numerical tests to measure the impact of system parameters on the expected value of imperfect ADI, and provide useful managerial insights. (C) 2009 Elsevier B.V. All rights reserved
Hysteretic and chaotic dynamics of viscous drops in creeping flows with rotation
It has been shown in our previous publication
(Blawzdziewicz,Cristini,Loewenberg,2003) that high-viscosity drops in two
dimensional linear creeping flows with a nonzero vorticity component may have
two stable stationary states. One state corresponds to a nearly spherical,
compact drop stabilized primarily by rotation, and the other to an elongated
drop stabilized primarily by capillary forces. Here we explore consequences of
the drop bistability for the dynamics of highly viscous drops. Using both
boundary-integral simulations and small-deformation theory we show that a
quasi-static change of the flow vorticity gives rise to a hysteretic response
of the drop shape, with rapid changes between the compact and elongated
solutions at critical values of the vorticity. In flows with sinusoidal
temporal variation of the vorticity we find chaotic drop dynamics in response
to the periodic forcing. A cascade of period-doubling bifurcations is found to
be directly responsible for the transition to chaos. In random flows we obtain
a bimodal drop-length distribution. Some analogies with the dynamics of
macromolecules and vesicles are pointed out.Comment: 22 pages, 13 figures. submitted to Journal of Fluid Mechanic
Suppression of interdiffusion in GaAs/AlGaAs quantum-well structure capped with dielectric films by deposition of gallium oxide
In this work, different dielectric caps were deposited on the GaAs/AlGaAs quantum well(QW) structures followed by rapid thermal annealing to generate different degrees of interdiffusion. Deposition of a layer of GaxOy on top of these dielectric caps resulted in significant suppression of interdiffusion. In these samples, it was found that although the deposition of GaxOy and subsequent annealing caused additional injection of Ga into the SiO₂ layer, Ga atoms were still able to outdiffuse from the GaAsQW structure during annealing, to generate excess Ga vacancies. The suppression of interdiffusion with the presence of Ga vacancies was explained by the thermal stress effect which suppressed Ga vacancydiffusion during annealing. It suggests that GaxOy may therefore be used as a mask material in conjunction with other dielectric capping layers in order to control and selectively achieve impurity-free vacancy disordering.J. Wong-Leung,
P. N. K. Deenapanray, and H. H. Tan acknowledge the fellowships
awarded by the Australian Research Council
- …