2,015 research outputs found

    Engineering a Tissue Mimic for Predictive Nanoparticle Assessment

    Get PDF
    Bio-scientific research has relied heavily on models of cell monolayers cultured on plastic. For most cell types, this does not represent their in vivo tissue organisation well. As a result they behave differently in vitro from in vivo, leading to poorly predictive data. Plastic compression (PC) of collagen is used to engineer constructs with more tissue-like conditions. The aim of this study was to test the feasibility of using these constructs as a three-dimensional tissue model for assessing the fate of hyaluronan nanoparticles (HA-NP). Collagen hydrogels were seeded with cells and HA-NP and subjected to PC. Due to their small size, HA-NP retention following PC was investigated. HA-NP uptake by cells was then compared to conventional monolayer cell cultures. 19.1±1.2% of the initial HA-NP load was retained following PC, which could be increased to 31.1±3.1% by multi-layering. This entrapment was found to be largely physical as HA-NPs were released from the construct following cellular remodeling, but not without it. Cells in monolayer reached their maximum HA-NP uptake in 3 days whilst cells in collagen peaked at 7 days. This maximum uptake was 60.1 a.u., twice as large as that of 3D-cultured cells (32.8 a.u). A novel method was developed to analyse local collagen densities which revealed particular collagen distributions in micro-patterned constructs depending on the shape of template used; round grooves had a 21.4±4% increase in collagen density at their bases, whilst rectangular grooves displayed two peaks corresponding to their internal corners, which were 15.2±4% and 16.9±3% denser than the unpatterned regions. This work has enabled greater understanding of the PC and micro-moudling which will aid in creating more complex tissue constructs in a predictable and controlled way. The importance of 3D tissue organisation in in vitro models, particularly for nanoparticle testing, has also been demonstrated in this work

    Roofed grooves: Rapid layer engineering of perfusion channels in collagen tissue models

    Get PDF
    Surface patterning (micro-moulding) of dense, biomimetic collagen is a simple tool to produce complex tissues using layer-by-layer assembly. The aim here was to channelise three-dimensional constructs for improved perfusion. Firstly, collagen fibril accumulation was measured by comparative image analysis to understand the mechanisms of structure formation in plastically compressed collagen during µ-moulding. This showed that shape (circular or rectangular) and dimensions of the template affected collagen distribution around moulded grooves and consequently their stability. In the second part, this was used for effective fabrication of multi-layered plastically compressed collagen constructs with internal channels by roofing the grooves with a second layer. Using rectangular templates of 25/50/100 µm widths and 75 µm depth, grooves were µ-moulded into the fluid-leaving surface of collagen layers with predictable width/depth fidelities. These grooves were then roofed by addition of a second plastically compressed collagen layer on top to produce µ-channels. Resulting µ-channels retained their dimensions and were stable over time in culture with fibroblasts and could be cell seeded with a lining layer by simple transfer of epithelial cells. The results of this study provide a valuable platform for rapid fabrication of complex collagen-based tissues in particular for provision of perfusing microchannels through the bulk material for improved core nutrient supply

    Aplastic Crisis as Primary Manifestation of Systemic Lupus Erythematosus

    Get PDF
    Aplastic crisis is an unusual feature of systemic lupus erythematosus (SLE). We report the case of a 54-year-old woman presenting with both (extravascular) Coombs-positive hemolytic anemia and laboratory findings of bone marrow hyporegeneration with concomitant severe neutropenia. A bone marrow biopsy confirmed aplastic crisis. Diagnostic work-up revealed soaring titers of autoantibodies (anti-nuclear, anti-double-stranded DNA, anti-cardiolipin-IgM, and anti-beta 2-glykoprotein-IgM antibodies), indicating a connective tissue disease as the most plausible reason for bone marrow insufficiency. As the criteria for SLE were fulfilled, we initiated an immunosuppressive therapy by steroids, which led to a rapid complete hematologic and clinical remission in our patient. In this case, we could report on one of the rare cases of SLE-induced aplastic crisis showing that this condition can be entirely reversed by immunosuppressive treatment and that SLE-induced aplastic crisis yields a good prognosis. In conclusion, in a case of aplastic crisis, physicians should be aware that SLE can be a rare cause that is accessible to specific treatment

    Genome characterization and taxonomy of <em>Actinomyces acetigenes</em> sp. nov., and <em>Actinomyces stomatis</em> sp. nov., previously isolated from the human oral cavity

    Get PDF
    \ua9 2023, The Author(s).Background: Actinomyces strains are commonly found as part of the normal microflora on human tissue surfaces, including the oropharynx, gastrointestinal tract, and female genital tract. Understanding the diversity and characterization of Actinomyces species is crucial for human health, as they play an important role in dental plaque formation and biofilm-related infections. Two Actinomyces strains ATCC 49340 T and ATCC 51655 T have been utilized in various studies, but their accurate species classification and description remain unresolved. Results: To investigate the genomic properties and taxonomic status of these strains, we employed both 16S rRNA Sanger sequencing and whole-genome sequencing using the Illumina HiSeq X Ten platform with PE151 (paired-end) sequencing. Our analyses revealed that the draft genome of Actinomyces acetigenes ATCC 49340 T was 3.27 Mbp with a 68.0% GC content, and Actinomyces stomatis ATCC 51655 T has a genome size of 3.08 Mbp with a 68.1% GC content. Multi-locus (atpA , rpoB, pgi , metG , gltA , gyrA, and core genome SNPs) sequence analysis supported the phylogenetic placement of strains ATCC 51655 T and ATCC 49340 T as independent lineages. Digital DNA-DNA hybridization (dDDH), average nucleotide identity (ANI), and average amino acid identity (AAI) analyses indicated that both strains represented novel Actinomyces species, with values below the threshold for species demarcation (70% dDDH, 95% ANI and AAI). Pangenome analysis identified 5,731 gene clusters with strains ATCC 49340 T and ATCC 51655 T possessing 1,515 and 1,518 unique gene clusters, respectively. Additionally, genomic islands (GIs) prediction uncovered 24 putative GIs in strain ATCC 49340 T and 16 in strain ATCC 51655 T, contributing to their genetic diversity and potential adaptive capabilities. Pathogenicity analysis highlighted the potential human pathogenicity risk associated with both strains, with several virulence-associated factors identified. CRISPR-Cas analysis exposed the presence of CRISPR and Cas genes in both strains, indicating these strains might evolve a robust defense mechanism against them. Conclusion: This study supports the classification of strains ATCC 49340 T and ATCC 51655 T as novel species within the Actinomyces, in which the name Actinomyces acetigenes sp. nov. (type strain ATCC 49340 T = VPI D163E-3 T = CCUG 34286 T = CCUG 35339 T) and Actinomyces stomatis sp. nov. (type strain ATCC 51655 T = PK606T = CCUG 33930 T) are proposed

    A controlled study of team-based learning for undergraduate clinical neurology education

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Team-based learning (TBL), a new active learning method, has not been reported for neurology education. We aimed to determine if TBL was more effective than passive learning (PL) in improving knowledge outcomes in two key neurology topics - neurological localization and neurological emergencies.</p> <p>Methods</p> <p>We conducted a modified crossover study during a nine-week internal medicine posting involving 49 third-year medical undergraduates, using TBL as the active intervention, compared against self-reading as a PL control, for teaching the two topics. Primary outcome was the mean percentage change in test scores immediately after (post-test 1) and 48 hours after TBL (post-test 2), compared to a baseline pre-test. Student engagement was the secondary outcome.</p> <p>Results</p> <p>Mean percentage change in scores was greater in the TBL versus the PL group in post-test 1 (8.8% vs 4.3%, p = 0.023) and post-test 2 (11.4% vs 3.4%, p = 0.001). After adjustment for gender and second year examination grades, mean percentage change in scores remained greater in the TBL versus the PL group for post-test 1 (10.3% vs 5.8%, mean difference 4.5%,95% CI 0.7 - 8.3%, p = 0.021) and post-test 2 (13.0% vs 4.9%, mean difference 8.1%,95% CI 3.7 - 12.5%, p = 0.001), indicating further score improvement 48 hours post-TBL. Academically weaker students, identified by poorer examination grades, showed a greater increase in scores with TBL versus strong students (p < 0.02). Measures of engagement were high in the TBL group, suggesting that continued improvements in scores 48 hours post-TBL may result from self-directed learning.</p> <p>Conclusions</p> <p>Compared to PL, TBL showed greater improvement in knowledge scores, with continued improvement up to 48 hours later. This effect is larger in academically weaker students. TBL is an effective method for improving knowledge in neurological localization and neurological emergencies in undergraduates.</p

    SCAMP:standardised, concentrated, additional macronutrients, parenteral nutrition in very preterm infants: a phase IV randomised, controlled exploratory study of macronutrient intake, growth and other aspects of neonatal care

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infants born <29 weeks gestation are at high risk of neurocognitive disability. Early postnatal growth failure, particularly head growth, is an important and potentially reversible risk factor for impaired neurodevelopmental outcome. Inadequate nutrition is a major factor in this postnatal growth failure, optimal protein and calorie (macronutrient) intakes are rarely achieved, especially in the first week. Infants <29 weeks are dependent on parenteral nutrition for the bulk of their nutrient needs for the first 2-3 weeks of life to allow gut adaptation to milk digestion. The prescription, formulation and administration of neonatal parenteral nutrition is critical to achieving optimal protein and calorie intake but has received little scientific evaluation. Current neonatal parenteral nutrition regimens often rely on individualised prescription to manage the labile, unpredictable biochemical and metabolic control characteristic of the early neonatal period. Individualised prescription frequently fails to translate into optimal macronutrient delivery. We have previously shown that a standardised, concentrated neonatal parenteral nutrition regimen can optimise macronutrient intake.</p> <p>Methods</p> <p>We propose a single centre, randomised controlled exploratory trial of two standardised, concentrated neonatal parenteral nutrition regimens comparing a standard macronutrient content (maximum protein 2.8 g/kg/day; lipid 2.8 g/kg/day, dextrose 10%) with a higher macronutrient content (maximum protein 3.8 g/kg/day; lipid 3.8 g/kg/day, dextrose 12%) over the first 28 days of life. 150 infants 24-28 completed weeks gestation and birthweight <1200 g will be recruited. The primary outcome will be head growth velocity in the first 28 days of life. Secondary outcomes will include a) auxological data between birth and 36 weeks corrected gestational age b) actual macronutrient intake in first 28 days c) biomarkers of biochemical and metabolic tolerance d) infection biomarkers and other intravascular line complications e) incidence of major complications of prematurity including mortality f) neurodevelopmental outcome at 2 years corrected gestational age</p> <p>Trial registration</p> <p>Current controlled trials: <a href="http://www.controlled-trials.com/ISRCTN76597892">ISRCTN76597892</a>; EudraCT Number: 2008-008899-14</p

    A qualitative investigation of the impact of peer to peer online support for women living with Polycystic Ovary Syndrome

    Get PDF
    Background: Polycystic Ovary Syndrome is a common, chronic condition which affects women living with the condition both physically and psychologically. Social support may be beneficial to sufferers in coping with chronic conditions and the Internet is becoming a common place for accessing social support and information. The aim of this study was to consider the experiences of women living with Polycystic Ovary Syndrome who access and participate in an online support group discussion forum dedicated to issues surrounding this condition. Methods: Fifty participants responded to a series of open-ended questions via an online survey. Results: Thematic analysis revealed a number of empowering and disempowering experiences associated with online support group participation. The empowering processes reported by members of the group included: Connecting with others who understand; Access to information and advice; Interaction with healthcare professionals; Treatment-related decision making; Improved adjustment and management. In terms disempowering processes, only two were described by group participants: Reading about the negative experiences of others and Feeling like an outsider. Conclusions: For women living with Polycystic Ovary Syndrome, participation within an online support group may help to empower them in a range of important ways however, there may be some disempowering consequences

    Comprehensive biomarker analyses identifies HER2, EGFR, MET RNA expression and thymidylate synthase 5'UTR SNP as predictors of benefit from S-1 adjuvant chemotherapy in Japanese patients with stage II/III gastric cancer

    Get PDF
    Purpose: A comprehensive molecular analysis was conducted to identify prognostic and predictive markers for adjuvant S-1 chemotherapy in stage II/III Japanese gastric cancer (GC) patients and to evaluate their potential suitability for alternative cytotoxic or targeted drugs. Experimental Design: We investigated genetic polymorphisms of enzymes potentially involved in 5-fluoruracil (5-FU) metabolism as well as platinum resistance, previously identified genomic subtypes potentially predicting 5-FU benefit, and mRNA expression levels of receptor tyrosine kinases and KRAS as potential treatment targets in a single institution cohort of 252 stage II/III GC patients treated with or without S-1 after D2 gastrectomy. Results: 88% and 62% GC had a potentially 5-FU sensitive phenotype by SNP analyses of TS 3'UTR, and TS 5'UTR, respectively. 24%, 46%, 40%, 5%, and 44% GC had a potentially platinum sensitive phenotype by SNP analyses of GSTP1, ERCC1 rs11615, ERCC1 rs3212986, ERCC2, and XRCC1, respectively. High HER2, EGFR, FGFR2, or MET mRNA expression was observed in 49%, 66%, 72%, and 54% GC, respectively. High HER2 expression was the only significant prognosticator (HR=3.912, 95%CI: 1.706-8.973, p=0.0005). High HER2 (p=0.031), low EGFR (p=0.124), high MET (p=0.165) RNA expression, and TS 5'UTR subtype 2R/2R, 2R/3C, or 3C (p=0.058) were significant independent predictors for S-1 resistance. Conclusions: The present study suggests that platinum-based or RTK targeted agents could be alternative treatment options for a substantial subgroup of Japanese GC patients currently treated with S-1. HER2, EGFR, MET, and TS 5'UTR SNP appear to be promising predictive markers for S-1 resistance warranting validation in an independent GC series

    Electrocardiographic Findings in Patients with Acute Coronary Syndrome Presenting with Out-of-Hospital Cardiac Arrest

    Get PDF
    We sought to characterize presenting electrocardiographic findings in patients with acute coronary syndromes (ACS) and out-of-hospital cardiac arrest (OHCA). In the Global Registry of Acute Coronary Events (GRACE) and Canadian ACS Registry I, we examined presenting and 24-48 hour follow-up ECGs of ACS patients who survived to hospital admission, stratified by presentation with OHCA. We assessed the prevalence of ST-segment deviation and bundle branch blocks and their association with in-hospital and 6-month mortality amongst those with OHCA. 215 (1.8%) of 12,040 ACS patients survived to hospital admission following OHCA. Those with OHCA had higher presenting rates of ST-segment elevation, ST-segment depression, T wave inversion, precordial Q waves, left bundle branch block (LBBB), and right bundle branch block (RBBB) than those without. Among patients with OHCA, those with ST-segment elevation had significantly lower in-hospital mortality (20.9% vs. 33.0%, p=0.044) and a trend toward lower 6-month mortality (27% vs. 39%, p=0.060) compared to those without ST-segment elevation. Conversely, among OCHA patients, LBBB was associated with significantly higher in-hospital and 6-month mortality rates (58% vs. 22%, p&lt;0.001 and 65% vs. 28%, p&lt;0.001 respectively). ST-segment depression and RBBB were not associated with either outcome. 63% of bundle branch blocks (RBBB or LBBB) on the presenting ECG resolved by 24-48 hours. In conclusion, compared with ACS patients without cardiac arrest, those with OHCA had higher rates of ST-segment elevation, LBBB and RBBB on admission. Among OHCA patients, ST-segment elevation was associated with lower in-hospital mortality, while LBBB was associated with higher in-hospital and 6-month mortality
    corecore