41,397 research outputs found
A synchronization technique for optical PPM signals
A technique for maintaining synchronization between optical PPM (pulse-position modulation) pulses and a receiver clock by means of a delay-tracking loop is described and analyzed. The tracking loop is driven by a doubly stochastic Poisson process that contains information about the location of the desired slot boundaries. The slot boundaries are subject to slowly varying random delays that are ultimately tracked by the loop. The concept of fractional rms delay error is introduced to quantify the effects of signal and background induced shot noise on the performance of the delay-tracking loop
Effects of axisymmetric contractions on turbulence of various scales
Digitally acquired and processed results from an experimental investigation of grid generated turbulence of various scales through and downstream of nine matched cubic contour contractions ranging in area ratio from 2 to 36, and in length to inlet diameter ratio from 0.25 to 1.50 are reported. An additional contraction with a fifth order contour was also utilized for studying the shape effect. Thirteen homogeneous and nearly isotropic test flow conditions with a range of turbulence intensities, length scales and Reynolds numbers were generated and used to examine the sensitivity of the contractions to upstream turbulence. The extent to which the turbulence is altered by the contraction depends on the incoming turbulence scales, the total strain experienced by the fluid, as well as the contraction ratio and the strain rate. Varying the turbulence integral scale influences the transverse turbulence components more than the streamwise component. In general, the larger the turbulence scale, the lesser the reduction in the turbulence intensity of the transverse components. Best agreement with rapid distortion theory was obtained for large scale turbulence, where viscous decay over the contraction length was negligible, or when a first order correction for viscous decay was applied to the results
Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs
The carrier dynamics of photoexcited electrons in the vicinity of the surface
of (NH4)2S-passivated GaAs were studied via terahertz (THz) emission
spectroscopy and optical-pump THz-probe spectroscopy. THz emission spectroscopy
measurements, coupled with Monte Carlo simulations of THz emission, revealed
that the surface electric field of GaAs reverses after passivation. The
conductivity of photoexcited electrons was determined via optical-pump
THz-probe spectroscopy, and was found to double after passivation. These
experiments demonstrate that passivation significantly reduces the surface
state density and surface recombination velocity of GaAs. Finally, we have
demonstrated that passivation leads to an enhancement in the power radiated by
photoconductive switch THz emitters, thereby showing the important influence of
surface chemistry on the performance of ultrafast THz photonic devices.Comment: 4 pages, 3 figures, to appear in Applied Physics Letter
Polarisation-sensitive terahertz detection by multicontact photoconductive receivers
We have developed a terahertz radiation detector that measures both the
amplitude and polarization of the electric field as a function of time. The
device is a three-contact photoconductive receiver designed so that two
orthogonal electric-field components of an arbitrary polarized electromagnetic
wave may be detected simultaneously. The detector was fabricated on Fe+
ion-implanted InP. Polarization-sensitive detection is demonstrated with an
extinction ratio better than 100:1. This type of device will have immediate
application in studies of birefringent and optically active materials in the
far-infrared region of the spectrum.Comment: 3 pages, 3 figure
Field correlations and effective two level atom-cavity systems
We analyse the properties of the second order correlation functions of the
electromagnetic field in atom-cavity systems that approximate two-level
systems. It is shown that a recently-developed polariton formalism can be used
to account for all the properties of the correlations, if the analysis is
extended to include two manifolds - corresponding to the ground state and the
states excited by a single photon - rather than just two levels.Comment: 4 pages, 2 figures, published versio
High magnetoresistance at room temperature in p-i-n graphene nanoribbons due to band-to-band tunneling effects
A large magnetoresistance effect is obtained at room-temperature by using
p-i-n armchair-graphene-nanoribbon (GNR) heterostructures. The key advantage is
the virtual elimination of thermal currents due to the presence of band gaps in
the contacts. The current at B=0T is greatly decreased while the current at
B>0T is relatively large due to the band-to-band tunneling effects, resulting
in a high magnetoresistance ratio, even at room-temperature. Moreover, we
explore the effects of edge-roughness, length, and width of GNR channels on
device performance. An increase in edge-roughness and channel length enhances
the magnetoresistance ratio while increased channel width can reduce the
operating bias.Comment: http://dx.doi.org/10.1063/1.362445
Effects of rapid thermal annealing on device characteristics of InGaAs/GaAs quantum dot infrared photodetectors
In this work, rapid thermal annealing was performed on InGaAs/GaAs quantum dot infrared photodetectors (QDIPs) at different temperatures. The photoluminescence showed a blueshifted spectrum in comparison with the as-grown sample when the annealing temperature was higher than 700 °C, as a result of thermal interdiffusion of the quantum dots (QDs). Correspondingly, the spectral response from the annealed QDIP exhibited a redshift. At the higher annealing temperature of 800 °C, in addition to the largely redshifted photoresponse peak of 7.4 µm (compared with the 6.1 µm of the as-grown QDIP), a high energy peak at 5.6 µm (220 meV) was also observed, leading to a broad spectrum linewidth of 40%. This is due to the large interdiffusion effect which could greatly vary the composition of the QDs and thus increase the relative optical absorption intensity at higher energy. The other important detector characteristics such as dark current, peak responsivity, and detectivity were also measured. It was found that the overall device performance was not affected by low annealing temperature, however, for high annealing temperature, some degradation in device detectivity (but not responsivity) was observed. This is a consequence of increased dark current due to defect formation and increased ground state energy. © 2006 American Institute of Physic
Squeezed single-atom laser in a photonic crystal
We study non-classical and spectral properties of a strongly driven
single-atom laser engineered within a photonic crystal that facilitates a
frequency-dependent reservoir. In these studies, we apply a dressed atom model
approach to derive the master equation of the system and study the properties
of the dressed laser under the frequency dependent transition rates. By going
beyond the secular approximation in the dressed-atom cavity field interaction,
we find that if, in addition, the non-secular terms are included into the
dynamics of the system, then non-linear processes can occur that lead to
interesting new aspects of cavity field behavior. We calculate variances of the
quadrature phase amplitudes and the incoherent part of the spectrum of the
cavity field and show that they differ qualitatively from those observed under
the secular approximation. In particular, it is found that the non-linear
processes lead to squeezing of the fluctuations of the cavity field below the
quantum shot noise limit. The squeezing depends on the relative population of
the dressed states of the system and is found only if there is no population
inversion between the dressed states. Furthermore, we find a linewidth
narrowing below the quantum limit in the spectrum of the cavity field that is
achieved only when the secular approximation is not made. An interpretation of
the linewidth narrowing is provided in terms of two phase dependent noise
(squeezing) spectra that make up the incoherent spectrum. We establish that the
linewidth narrowing is due squeezing of the fluctuations in one quadrature
phase components of the cavity field.Comment: 12 pages, 6 figure
Photon-number-solving Decoy State Quantum Key Distribution
In this paper, a photon-number-resolving decoy state quantum key distribution
scheme is presented based on recent experimental advancements. A new upper
bound on the fraction of counts caused by multiphoton pulses is given. This
upper bound is independent of intensity of the decoy source, so that both the
signal pulses and the decoy pulses can be used to generate the raw key after
verified the security of the communication. This upper bound is also the lower
bound on the fraction of counts caused by multiphoton pulses as long as faint
coherent sources and high lossy channels are used. We show that Eve's coherent
multiphoton pulse (CMP) attack is more efficient than symmetric individual (SI)
attack when quantum bit error rate is small, so that CMP attack should be
considered to ensure the security of the final key. finally, optimal intensity
of laser source is presented which provides 23.9 km increase in the
transmission distance. 03.67.DdComment: This is a detailed and extended version of quant-ph/0504221. In this
paper, a detailed discussion of photon-number-resolving QKD scheme is
presented. Moreover, the detailed discussion of coherent multiphoton pulse
attack (CMP) is presented. 2 figures and some discussions are added. A
detailed cauculation of the "new" upper bound 'is presente
- …