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We study nonclassical and spectral properties of a strongly driven single-atom laser engineered within a
photonic crystal that facilitates a frequency-dependent reservoir. In these studies, we apply a dressed atom
model approach to derive the master equation of the system and study the properties of the dressed laser under
the frequency-dependent transition rates. By going beyond the secular approximation in the dressed-atom
cavity-field interaction, we find that if, in addition, the nonsecular terms are included into the dynamics of the
system, then nonlinear processes can occur that lead to interesting aspects of cavity field behavior. We calculate
variances of the quadrature phase amplitudes and the incoherent part of the spectrum of the cavity field and
show that they differ qualitatively from those observed under the secular approximation. In particular, it is
found that the nonlinear processes lead to squeezing of the fluctuations of the cavity field below the quantum
shot noise limit. The squeezing depends on the relative population of the dressed states of the system and is
found only if there is no population inversion between the dressed states. Furthermore, we find a linewidth
narrowing below the quantum limit in the spectrum of the cavity field that is achieved only when the secular
approximation is not made. An interpretation of the linewidth narrowing is provided in terms of two phase-
dependent noise �squeezing� spectra that make up the incoherent spectrum. We establish that the linewidth
narrowing is due to squeezing of the fluctuations in one quadrature phase components of the cavity field.
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I. INTRODUCTION

A single-atom laser, in which no more than one atom is
present in an optical resonator, is one of the key systems to
study quantum effects in the interaction of electromagnetic
fields with matter �1–5�. Although a single-atom laser is ad-
mittedly an elementary model, it has the advantage over a
multiatom laser that in any practical realization of the laser
one is not concerned with many difficulties such as fluctua-
tions of the number of atoms. With the present trapping and
cooling techniques, the atom can easily be localized in a
small region within the Lamb-Dicke regime. Because of its
simplicity, many quantum features of single-atom lasers,
such as sub-Poissonian photon statistics, photon antibunch-
ing, squeezing and vacuum Rabi splitting have been pre-
dicted and experimentally observed �6,7�.

The primary obstacle in the realization of one-atom lasers
is spontaneous emission. The reason is that spontaneous
emission is a source of noise that leads to emission of pho-
tons into modes different from the cavity mode. Therefore, it
is not surprising that many schemes have been proposed to
reduce spontaneous emission. It has been demonstrated that
spontaneous emission can be reduced if an atom is located in
a squeezed vacuum �8�, or inside a cavity that facilitates an
exclusive spatial selection of radiation modes coupled to the
atom �9–12�. The cavity appears as a frequency filter for
spontaneous emission. A further reduction of spontaneous
emission can be achieved through a dynamical means that
unlike the conventional method of coupling an atom into the
cavity mode, one could first drive the atom with a strong
laser field and then couple the resulting dressed-atom system

with the cavity mode �13,14�. When the Rabi frequency of
the driving laser is much larger than the cavity bandwidth,
one can tune the cavity mode to one of the dressed-atom
transition frequencies thereby eliminating spontaneous emis-
sion on the other transitions. Within this approach, a wide
variety of quantum and spectral features, such as atomic
population inversion �15–17�, and dynamical suppression
and narrowing of the spectral lines �18,19� has been pre-
dicted and some of them verified experimentally �20–23�.

Recently, Florescu et al. �24� have applied the dressed-
atom approach to a single-atom laser that incorporates the
dynamical suppression of spontaneous emission inside a
photonic crystal. They have applied the secular approxima-
tion in the coupling of a dressed two-level atom to the cavity
mode that the Rabi frequency of the dressing field is much
larger than the coupling constant between the atom and the
cavity field. By appropriate tuning of the cavity mode and
the dressed-atom transition frequencies, they have shown
that the variances of the cavity field amplitude and the line-
width of the cavity field spectrum can be reduced to the
quantum shot noise limit. These effects result from the filter-
ing property of the photonic crystal that effectively forms a
frequency-dependent reservoir of a specific spectral function
�step function� of the radiation modes. A photonic crystal
that is a periodic dielectric structure, can prohibit light
propagation over a continuous range of frequencies, irrespec-
tive of the direction of propagation �25,26�. It is also known
that in photonic crystals extremely small microcavity mode
volumes and very high cavity Q factors can be realized
�27–29�. It is associated with the unique properties of photo-
nic crystals, i.e., the photonic density of states within or near
a photonic band gap can almost vanish or exhibit discontinu-
ous changes as a function of frequency with appropriate en-
gineering, which is essentially different from its free-space
counterpart.*gaox@phy.ccnu.edu.cn

PHYSICAL REVIEW A 78, 023833 �2008�

1050-2947/2008/78�2�/023833�11� ©2008 The American Physical Society023833-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/15064255?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevA.78.023833


Although the secular approximation is often entirely ad-
equate to describe the interaction of the cavity field with a
dressed-atom system, there are circumstances when the non-
secular terms might be important, for example, in the strong
coupling limit of the cavity field to the dressed-atom system.
One could argue that even under these circumstances, the
nonsecular terms would only make small corrections to the
dynamics of the system. In the following, we show that this
is not the case, they may lead to new aspects of cavity field
behavior that differ qualitatively from those observed under
the secular approximation. To show this, the dressed-atom
approach for a driven two-level atom placed inside a photo-
nic crystal is generalized to deal with nonsecular terms in the
atom-cavity field interaction. The method used in this paper
is similar to that used by Florescu et al. �24� but with one
significant difference, we do not make the secular approxi-
mation in the coupling of the cavity mode to the dressed-
atom system. Instead, we consider the role of the nonsecular
terms in the operation of a strongly driven single-atom laser.
We present solutions for the steady-state variance of the
quadrature components of the cavity field amplitude and the
incoherent part of the spectrum of the cavity field. In the
course of the calculations, we observe that the inclusion of
the nonsecular terms results in a double coupling of the cav-
ity field to the dressed atom and leads to nonlinear terms in
the master equation of the system that reflects a possibility of
nonlinear processes between the dressed states when the
secular approximation is not made. Our results demonstrate
that these nonlinear processes lead to the reduction of the
fluctuations of the cavity field amplitude below the quantum
shot noise limit. In addition, we find that the spectral line of
the cavity field may now be narrowed below the quantum
limit giving a subnatural linewidth of the emitted field. A
qualitative understanding of the origin of the line narrowing
is obtained by writing the incoherent part of the cavity field
spectrum in terms of the phase-dependent noise �squeezing�
spectra. We show that the narrowing results from negative
values of the squeezing spectrum of one quadrature phase
component of the field.

The paper is organized as follows. In Sec. II, we present
the model Hamiltonian and derive the master equation for a
strongly driven two-level atom coupled to a single-mode
cavity and placed inside a photonic band-gap material that
acts as a frequency-dependent reservoir. In Sec. III, we de-
rive the basic equations of motion for the expectation values
of the atomic and field correlation functions and find their
steady-state values. We then apply them in Sec. IV to inves-
tigate variances of the quadrature phase components of the
cavity field that determine the fluctuations of the cavity field
amplitude, and in Sec. V to the calculations of the spectrum
of the cavity field. We calculate the incoherent part of the
spectrum and then analyze its properties in terms of the
squeezing spectra. Finally, we summarize the results in
Sec. VI.

II. MASTER EQUATION

We consider a single two-level atom with ground state �1�
and excited state �2� separated by the transition frequency �a.

The atom is coupled to a single mode of a high-Q microcav-
ity engineered within a photonic crystal with coupling con-
stant g, and is driven by a coherent external laser field of a
frequency �L and the resonant Rabi frequency �. In addition,
the atom is damped at the rate � by spontaneous emission to
modes other than the cavity mode. In practice this model can
be realized by embedding a quantum dot in a dielectric mi-
crocavity �defect� placed within a two-mode waveguide
channel in a two-dimensional �2D� PBG microchip �24�. In a
photonic band-gap material, one mode of the waveguide
channel is engineered to produce a large discontinuity in the
local photon density of states near the atom, and another
mode is used to propagate the pump beam. By suitable en-
gineering, it is possible to realize a strong coupling of the
quantum dot to both the pumping waveguide mode and the
high-Q cavity mode �24�. For simplicity, we treat the driving
external field classically and work in the interaction picture.
The total system is described by a Hamiltonian that under the
electric-diople and the rotating-wave approximations can be
written as

H = H0 + H1, �1�

where the first term

H0 = ��ca
†a +

1

2
��a�3 + ����12 + �21� + ��

�

��a�
†a�

�2�

is the noninteracting Hamiltonian of the driven atom plus the
cavity mode plus the photonic crystal radiation reservoir
modes, and the second term

H1 = i�g�a†�12 − �21a� + i��
�

g������a�
†�12 − �21a��

�3�

is the interaction Hamiltonian between the atom and the cav-
ity mode and the photonic crystal vacuum radiation modes.

Here, a and a† are the cavity-mode annihilation and cre-
ation operators, a� and a�

† are the photonic crystal radiation
reservoir annihilation and creation operators, �ij are the bare
atomic operators, �ij = �i��j� �i , j=1,2�, and �3=�22−�11 de-
scribes the bare atomic inversion. The parameter �a=�a
−�L denotes the detuning of the atomic resonance frequency
�a from the frequency �L of the driving laser field, �c=�c
−�L is the detuning of the cavity frequency from the fre-
quency of the laser field, and ��=��−�L is the detuning of
the reservoir frequency �� of a mode � from the laser fre-
quency.

The coefficient g describes the strength of the coupling
between the atom and the cavity mode that we assume to be
constant independent of frequency, and g����� describes the
strength of the coupling between the atom and the vacuum
modes of the photonic crystal. It contains the information
about the frequency-dependent mode structure of the photo-
nic crystal and can be written as

g����� = g�D���� , �4�

where g� is a constant proportional to the dipole moment of
the atom, and D���� is the transfer function of the photonic
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crystal, the absolute value square of which can be identified
as the Airy function of a frequency-dependent radiation res-
ervoir �30�.

The explicit form of D���� depends on the type of radia-
tion reservoir used. For a photonic band-gap material, the
transfer function is in the form of the unit step function
�D�����2=u���−�b�, where �b is the photonic density of
states band edge frequency. Thus, �D�����2=0 for ����b
and �D�����2=1 for ��	�b. Since the frequencies ����b
are forbidden in the band-gap material, it is possible to se-
lectively eliminate spontaneous emission at some frequen-
cies of the driven atom.

The strong driving field can be viewed as a dressing field
for the atom. Therefore, we begin by diagonalizing the
atomic part of the Hamiltonian together with the interaction
of the atom with the laser field

Haf = 1
2��a�3 + ����12 + �21� �5�

to find the eigenstates �dressed states� of the combined atom
plus driving field system. Since the driving field is treated
classically in our calculations, we find the so-called semi-
classical dressed states

�1̃� = cos 
�1� + sin 
�2� ,

�2̃� = sin 
�1� − cos 
�2� , �6�

where cos2 
= �1+�a /�� /2 with the angle 
 defined such
that 0�
� /2. The dressed states form nondegenerate
doublets that are separated in energy by ��L, and the states
of the doublet are split by �2�, where �= �4�2+�a

2�1/2 is the
Rabi frequency of the detuned field.

We now couple the dressed states to the cavity field and to
the photonic crystal vacuum modes. First, we replace the
atomic operators by the dressed-state operators

�12 = −
1

2
sin�2
�R3 + sin2 
R21 − cos2 
R12,

�21 = −
1

2
sin�2
�R3 + sin2 
R12 − cos2 
R21,

�3 = − cos�2
�R3 + sin�2
��R12 + R21� , �7�

where Rij = �ĩ�� j̃� are the dressed-atom dipole operators and
R3=R22−R11. Next, we perform the unitary “dressing” trans-
formation of the interaction Hamiltonian

H̃1 = exp�iH̃0t�H1 exp�− iH̃0t� , �8�

with

H̃0 = �R3 + �ca
†a + �

�

��a�
†a�, �9�

and obtain the interaction Hamiltonian between the dressed
atom and both the cavity mode and the photonic crystal
vacuum modes

H̃1 = i�g�sca†R3ei�ct + c2a†R12e
i��c−2��t

− s2a†R21e
i��c+2��t − H.c.� + i��

�

g��sca�
†R3ei��t

+ c2a�
†R12e

i���−2��t − s2a�
†R21e

i���+2��t − H.c.� , �10�

where s=sin 
 and c=cos 
.
The Hamiltonian �10� describes the interaction of the

dressed atom with the cavity field and with the vacuum
modes. We see that in the dressed-atom picture, the cavity
frequency and the vacuum modes are tuned to the dressed-
state transitions that occur at three characteristic frequencies,
�c and �c�2�. By matching the cavity field frequency to
one of the dressed states frequencies, we may manipulate the
interaction between the driven system and the cavity mode.

Our aim is to derive from the Hamiltonian �10� the master
equation for a reduced density operator of the driven atom
and the cavity field. It is obtained by tracing the density
operator of the total system over the photonic crystal radia-
tion reservoir variables. On carrying out this procedure, it is
found that in the dissipative part of the master equation cer-
tain terms are slowly varying in time while the others are
oscillating with frequencies 2� and 4�. Since we are inter-
ested in the case where the Rabi frequency � is much larger
than the atomic and cavity damping rates

� � �,� , �11�

we can invoke the secular approximation that consists of
dropping these rapidly oscillating terms. These terms, if kept
in the master equation, would make corrections to the dy-
namics of the system of the order of � /�, and thus be com-
pletely negligible. We therefore find that after discarding the
rapidly oscillating terms in the dissipative part of the master
equation, the time evolution of the reduced density operator
is of the form

��

�t
= gsc�a†R3ei�ct − aR3e−i�ct,�� + gc2�a†R12e

i��c−2��t

− aR21e
−i��c−2��t,�� − gs2�a†R21e

i��c+2��t

− aR12e
−i��c+2��t,�� + La� + Lc� , �12�

where

La� = 1
2�0�R3�R3 − �� + 1

2�−�R21�R12 − R12R21��

+ 1
2�+�R12�R21 − R21R12�� + H.c.,

Lc� = 1
2��2a�a† − a†a� − �a†a� ,

describe spontaneous dynamics between the dressed states of
the system and of the cavity mode, respectively. The param-
eters

�0 = s2c2��D��L��2 + �c2 − s2��p,

�− = s4��D��L − 2���2 + 4s2c2�p,
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�+ = c4��D��L + 2���2 + 4s2c2�p �13�

determine the damping rates between the dressed states of
the system. They also include the contribution of the dephas-
ing rate �p which may arise from scattering of phonons of
the host crystal on the atom embedded in the solid part of the
dielectric material. The coefficient �0 corresponds to sponta-
neous emission occurring at two transitions of the dressed

atom: One from the lower dressed state �1̃� to the lower
dressed state of the manifold below and the other from the

upper dressed state �2̃� to the upper dressed state of the mani-
fold below. These transitions occur at frequency �L. The co-
efficient �+ corresponds to spontaneous emission from the
upper dressed state to the lower dressed state of the manifold
below and occurs at frequency �L+2�, whereas the coeffi-
cient �− corresponds to spontaneous emission from the lower
dressed state to the upper dressed state of the manifold below
and occurs at frequency �L−2�.

An essential feature of the master equation �12� is the
presence of the oscillatory terms in the coherent part of the
evolution involving the dressed atom and the cavity field. In
experimental practice it might imply that there is no restric-
tion on the relation between the Rabi frequency � and the
coupling constant g, and the master equation can be applied
to both situations, where the coupling constant g is much
smaller or comparable to the Rabi frequency.

As we have already mentioned, we work in the strong-
coupling regime of ��g�� ,�. The latter inequality has
been invoked into Eq. �12� to neglect the effect of nonsecular
terms in the dissipative part of the master equation, but to
keep the nonsecular terms in the interaction of the cavity
field with the dressed atom. This condition is satisfied in a
typical band-gap material, where strong couplings g and sig-
nificant reductions of the spontaneous emission rate � are
easily achieved due to the confinement of the atom to an
extremely small volume with a significantly suppressed den-
sity of the vacuum modes. For example, given the electric
dipole moment of an atom of �	10−29 C m−1 and the cavity
mode volume of V	10−6 m3, then the atom cavity coupling
will be g	1010 Hz �24,27�. With the spontaneous emission
rate of the atom in a free space of �	108 Hz, the inequality
g�� is easy satisfied. The parameter �, that describes the
damping of the cavity field, is equal to zero in an ideal cav-
ity. However, in a realistic structure ��0, that arises from a
weak coupling of the cavity mode to the waveguide mode of
the band-gap material. This coupling may result from defects
or disorders in the waveguide channel caused by the manu-
facturing process that can be kept at a minimal level
�24,26,27,29�. Effectively, the waveguide channel acts as an
external reservoir of vacuum modes to which photons can
escape from the cavity mode. Thus, the inequality g�� ,� is
realistic and should be easy to satisfy within the current
band-gap material technology.

In the following, we focus on the case of �c	0, i.e., the
cavity field tuned close to the central frequency of the
dressed atom. In this limit, the master equation �12� contains
terms that are time independent and thus corresponding to
the resonant interaction of the cavity field with the dressed
atom. It also contains terms that have an explicit time depen-

dence of the form exp��2i�t�. These terms correspond to a
dispersive �nonresonant� interaction of the cavity field with
the dressed atom, which induces interesting property as we
will show below.

We first perform a canonical transformation of the master
equation �12� by

�̃ = exp�i�ca
†at�� exp�− i�ca

†at� , �14�

and find that the master equation for the transformed density
operator takes the form

��̃

�t
= − i�H0� + H��t�, �̃� + La�̃ + Lc�̃ , �15�

where

H0� = gsc�a†R3 − aR3� + �ca
†a ,

H��t� = ig��c2a† + s2a�R12e
−i2�t − H.c.� . �16�

Note that the Hamiltonian H��t� disappears under the secular
approximation on the interaction of the dressed atom with
the cavity field. Due to the presence of the rapidly oscillating
terms, the Hamiltonian H��t� can be treated as a perturber to
the time-independent Hamiltonian H0�. Since g��, we can
perform a second-order perturbation calculation with respect
to g and find an effective Hamiltonian �31� that can be writ-
ten as

Heff� = − iH��t� 
 H��t��dt�

=
�g2

2�
�s2c2R3�a2 + a†2� + �s4 + c4��R3a†a +

1

2
R3� .

�17�

In this case, the master equation �12� takes the form

��̃

�t
= − i���c +

g2
2

2�
R3a†a, �̃� − i

g2
2

4�
�R3, �̃�

+ g1��a† − a�R3, �̃� − i
g1

2

2�
�R3�a2 + a†2�, �̃�

+ La�̃ + Lc�̃ , �18�

where

g1 = gsc and g2 = g��s4 + c4� �19�

are the “effective” coupling constants of the cavity field to
the dressed-atom system.

The important feature of the master equation �18� is in the
presence of additional nonlinear terms that results in an ef-
fective double coupling of the cavity field to the dressed
atom. The first term on the right-hand side of Eq. �18� rep-
resents a shift of the cavity frequency. It includes a dressed-
atom inversion-dependent shift that arises solely from the
nonsecular terms in the dressed-atom picture. The second
term represents a shift of the dressed-atom frequencies that
also arises from the presence of the nonsecular terms. The
third term represents a resonant coupling of the cavity field
to the dressed atom at frequency �c	�L, and finally the
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fourth term describes a dispersive coupling through the off-
resonant Rabi sideband frequencies and is determined by
nonlinear two-photon absorption and emission processes be-
tween the dressed states. Thus, the presence of the nonsecu-
lar terms results in the nonlinear coupling of the cavity field
to the dressed atom and shifts of the cavity and dressed-atom
resonance frequencies. The amplitude of these contributions
is of order g2 /� and therefore is small, but not necessarily
too small to make detectable contributions to the dynamics
of the system. In what follows, we shall show that the non-
linear terms in the master equation �18� play in fact an im-
portant role in the dynamics of the system and will study in
details nonclassical and spectral properties of the output field
of the laser operating with a resonator engineered in a pho-
tonic band-gap material.

III. EQUATIONS OF MOTION

In this section we investigate the influence of the non-
secular terms on the properties of a driven single-atom laser.
The properties can all be expressed in terms of single-time
and two-time expectation values of the dressed atom and the
cavity field operators. The master equation �18� enables us to
derive equations of motion for expectation values of an arbi-
trary combination of the atomic and cavity field operators. In
particular, for the dressed-atom population inversion and the
cavity field amplitudes, we find the following closed set of
equations of motion:

d

dt
�R3� = − �2 − �1�R3� ,

d

dt
�a� = − �1

2
� − i�c�a� + g1�R3� − i

g2
2

2�
�R3a� − i

g1
2

�
�R3a†� ,

d

dt
�R3a� = g1 − ��1 +

1

2
� − i�c�R3a� − �2�a� − i

g2
2

2�
�a�

− i
g1

2

�
�a†� , �20�

and equations of motion for �a†� and �R3a†� are obtained by
Hermitian conjugate of the above equations.

For the expectation values involving higher-order combi-
nations of the operators, such as the number of photons, the
master equation leads to the following set of equations of
motion:

d

dt
�a†a� = − ��a†a� + g1��R3a†� + �R3a��

− i
g1

2

�
��R3a†2� − �R3a2�� ,

d

dt
�a†2� = i

g1
2

�
�R3� − �� + 2i�c��a†2� + 2g1�R3a†�

+ i
g2

2

�
�R3a†2� + 2i

g1
2

�
�R3a†a� ,

d

dt
�R3a†2� = i

g1
2

�
− ��1 + � + 2i�c��R3a†2� + 2g1�a†� − �2�a†2�

+ i
g2

2

�
�a†2� + 2i

g1
2

�
�a†a� ,

d

dt
�R3a†a� = − ��1 + ���R3a†a� + g1��a†� + �a�� − �2�a†a�

− i
g1

2

�
��a†2� − �a2�� , �21�

and equations of motion for �a2� and �R3a2� are obtained by
the Hermitian conjugate of the equations of motion for �a†2�
and �R3a†2�, respectively.

The quantities �1 and �2 occurring in Eqs. �20� and �21�
are given in terms of the damping rates �+ and �−, and are
defined as

�1 = �+c4 + �−s4 + 8�ps2c2,

�2 = �+c4 − �−s4. �22�

We see that the quantities �1 and �2 depend only on the
transition rates centered at the dressed states resonances cor-
responding to the Rabi sidebands. Moreover, the quantity �2
can be negative, whereas �1 is positive for all values of the
parameters involved. In addition, �1��2 even in the absence
of the dephasing process, �p=0.

IV. STEADY-STATE SOLUTIONS

We proceed here to discuss the steady-state properties of
the correlation functions for �c=0 that are listed in Appendix
A. In this simplified case, we obtain solutions in a physically
transparent form that will allow one to gain physical insight
into how the nonsecular terms and structured band-gap ma-
terial can modify the properties of the dressed-atom system
and the cavity field. The exact steady-state solutions of Eqs.
�20� and �21�, valid for an arbitrary detuning �c are quite
lengthy and will be computed numerically in the next sec-
tion.

Before commencing our analysis of the properties of the
cavity field, we first look into properties of the dressed atom.
We observe that the equation of motion for the expectation
value of the atomic operator R3 is decoupled from the re-
maining equations. Hence, it has a simple steady-state solu-
tion

�R3� = −
�2

�1
. �23�

This shows that the steady-state value of the dressed inver-
sion operator is not affected by the nonsecular terms. How-
ever, it depends crucially on the quantities �1 and �2 that, on
the other hand, depend on the mode structure of the band-gap
material. The inversion varies between +1 and −1 corre-

sponding to locking the population in the dressed state �2̃�
and �1̃�, respectively. According to Eq. �22�, it happens when
there is no spontaneous emission on one of the Rabi fre-
quency of the dressed system.
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Let us now examine the stationary properties of the cavity
field. In the steady-state regime and for the case of the cavity
frequency and the atomic transition frequency tuned on reso-
nance with the central frequency of the dressed-atom system,
�c=0 and �a=0, the expectation values of the cavity field
operators can be expressed as

�a� = −
2g1�2

�1�
�1 + i

4g1
2�1

��2�
− i

8g1
2��1

2 − �2
2�

��2�2�1 + ���
 ,

�a2� =
4g1

2

�2 �1 −
2��1

2 − �2
2�

�1�2�1 + ��
 + i

g1
2�2

��1�

��1 +
32g1

2

�2 �1 −
�3� + 4�1���1

2 − �2
2�

�� + �1��� + 2�1�2 �
−

2g1
4

�2�2�1 −
��1

2 − �2
2�

�1��1 + ��
+

32g1
2

�2

��1 −
u��1

2 − �2
2�

�1��1 + ��2�2�1 + ��2� ,

�a†a� =
4g1

2

�2 �1 −
2��1

2 − �2
2�

�1�2�1 + ��
+

g1
2

2�2�1 −
��1

2 − �2
2�

�1��1 + ��

+
32g1

2

�2 �1 −
u��1

2 − �2
2�

�1��1 + ��2�2�1 + ��2�� , �24�

where u= ��1+���2�1+���2�1+3��+ �4�1+3���2
2.

Similarly to the dressed-atom inversion, the properties of
the expectation values of the cavity field depend on the pa-
rameters �1 and �2 and thus are also sensitive to the mode
structure of the band-gap material. A particular situation of
interest is that of �1=�2 which, according to Eq. �22� occurs
when the dephasing rate �p=0 and the lower Rabi sideband
frequency is adjusted to be inside the forbidden frequency
region of the band-gap material, �−=0. As we see from Eq.
�24�, the cavity field correlation functions are then enhanced
due to the combined effect of the band-gap material and the
nonsecular processes.

The nonsecular terms not only enhance the number of
photons, but also lead to a shift of the cavity resonance fre-
quency. This is shown in Fig. 1, where we plot the steady-
state expectation value of the number of photons in the cav-
ity field as a function of the detuning �c in the band-gap
material configuration �−=0, in which spontaneous emission
is forbidden at the lower Rabi sideband frequency. The
graphs are computed from the exact steady-state solution of
Eq. �21� that is presented in Appendix A. It is evident that in
the presence of the nonsecular terms the number of photons
attains the maximum value in the vicinity of the detuning
�c=−0.16�. The shift of the maximum towards the negative
detuning �c indicates a pulling of the oscillation frequency
of the cavity field away from the passive cavity frequency �c
towards the lower Rabi sideband frequency that is inside the
forbidden frequency region of the band-gap material. This is
another noteworthy feature of the nonsecular terms in the
dressed-atom picture.

We note here that the values of the parameters used to plot
Fig. 1 are consistent with the good cavity limit assumed in
the derivation of the master equation �18� and are experimen-
tally realistic. We have discussed the validity of the good
cavity limit in Sec. II for realistic parameters of our system,
and have shown that a small cavity damping and a large
atom cavity coupling g can be readily achieved within the
current band-gap material technology �24,27�.

V. FLUCTUATIONS OF THE CAVITY FIELD

We now proceed to investigate the fluctuations of the
cavity field amplitude by analyzing the variances of the
conjugate quadrature phase amplitudes X+=aei�+a†e−i� and
X−=−i�aei�−a†e−i��, where � is the quadrature phase. Previ-
ous calculations of Florescu et al. �24� have shown that un-
der the secular approximation and by appropriate tuning of
the dressed-atom transition frequencies to the band-gap ma-
terial mode transfer structure, the fluctuations of the cavity
field can be reduced down up to the quantum shot noise
limit. We now consider the possibility of using the nonsecu-
lar processes to reduce the quantum fluctuations below the
quantum limit. There is a good reason to believe that the
nonsecular processes can modify the fluctuations of the cav-
ity field amplitude. They appear as nonlinear processes and it
is well known that these processes are typical sources used to
generate squeezed light �8�.

Let us first examine the normally ordered variance of the
quadrature component X+ for the simplified case of �c=0.
This analysis provides simple analytical formulas for the
variance and illustrates the role of the nonsecular processes
in the behavior of the cavity field. To determine the variance,
we use Eq. �24� and find that it can be expressed as

�:��X+�2:�s = S1 + S2, �25�

where

FIG. 1. The steady-state expectation value of the number of
photons in the cavity field plotted as a function of the detuning �c

in the presence �solid line� and in the absence �dashed line� of the
nonsecular terms for �=100�, �+=10�, �=0.1�+, g=10�, �a=0,
and �−=�p=0.
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S1 =
8g1

2��1
2 − �2

2�
��1

2�� + 2�1�
�1 + cos 2�� �26�

is the contribution of the linear interaction term, and

S2 = −
2g1

2�2 sin 2�

��1�
�1 +

32g1
2��1

2 − �2
2��3�1 + 2��

��1�� + �1��� + 2�1�2 
+

4g1
4�1 − cos 2��

�2�2 �1 −
��1

2 − �2
2�

�1�� + �1�

+
32g1

2��1
2 − �2

2����1�� + �1� + �5�1 + 4���2
2�

��1
2�� + �1�2�� + 2�1�2 

�27�

is the contribution from the nonsecular terms.
Clearly, S1�0 and S2 vanishes under the secular approxi-

mation. Note that the term S2 is negative for the phase angle
0��� /2 and �2 positive. Thus, for an appropriate choice
of the parameters, the fluctuations of the cavity field can be
squeezed below the quantum shot noise level. However,
when we examine Eqs. �26� and �27�, we find that the S1
term exceeds the S2 term independent of the values of the
parameters involved. This means that squeezing is possible
only when the term S1 is suppressed. Inspection of Eq. �27�
shows that the S1 term is suppressed when �1=�2. According
to Eq. �22�, this condition can be achieved by suppressing
spontaneous emission on transitions at the lower Rabi fre-
quency �L−2�. Thus, the immediate consequence of the
fact that �1=�2 is that the dominating positive term S1 van-
ishes, leaving the variance depending solely on the term S2
that arises from the presence of the nonlinear processes be-
tween the dressed states. Note the dependence of the
“squeezer,” the S2 term of the variance, on the ratio �2 /�1
that according to Eq. �23� determines the inversion between
the dressed states. Apparently, for phase angles 0��� /2,
squeezing is obtained only when �2	0, i.e., when there is no
inversion between the dressed states and vice versa, for
phase angles  /2���, squeezing is obtained for a nega-
tive �2, i.e., when there is an inversion between the dressed
states. Moreover, the optimal condition for squeezing is to
maintain �1=�2. These analysis indicate that a photonic
band-gap material can be employed to generate a squeezed
field from a single-atom laser.

Figure 2 shows the normally ordered variance �:��X+�2 : �s
as a function of the quadrature phase angle �. As the phase
change, the variance oscillates from negative to positive val-
ues. Negative values mean squeezing of the fluctuations of
the quadrature phase amplitude below the quantum shot
noise level. The maximum negative value of the variance,
corresponding to the maximum squeezing occurs at �
	0.55. However, the maximum value of squeezing obtained
for �c=0 might not be the greatest value possible due to the
shift of the cavity resonance. Actually, it appears for a detun-
ing slightly shifted from the cavity resonance. This is shown
in Fig. 3, where we plot the variance as a function of the
scaled Rabi frequency � /�a, for �1=�2 and different detun-
ings �c. We see that the variance is negative for all values of
the Rabi frequency, thus indicating that the cavity field can

be in a squeezed state irrespective of the strength of the laser
field. As the Rabi frequency increases, the variance decreases
and then saturates to a constant value. The saturation level
decreases with increasing negative detuning �c and attains
the maximal negative value, corresponding to the maximum
squeezing, for �c=−0.26�.

We may conclude this section that the filtering properties
of the band-gap material and the treatment of the interaction
between the cavity field and the dressed atom beyond the
secular approximation produces important modifications in
the variance of the quadrature field amplitudes, greatly re-
ducing the fluctuations below the quantum limit.

VI. SPECTRUM OF THE CAVITY FIELD

In this section we investigate the spectrum of the cavity
field and point out one more difference between the secular
and nonsecular single-atom lasers. It has been shown by Flo-

FIG. 2. The steady-state variance �:��X+�2 : �s of the quadrature
component of the cavity field as functions of the quadrature phase
� / in a full photonic band gap and for vanishing detuning �c=0.
All other parameters are the same as in Fig. 1.

FIG. 3. The normally ordered variance �:��X+�2 : �s as a function
of the scaled Rabi frequency � /�a in the band-gap material
configuration of �−=0 for �=0.8, �=100�, �+=10�, �=0.1�+,
g=10�, �p=0 and different detunings �c: �c=0 �dotted line�,
�c=−0.16� �dashed line�, and �c=−0.26� �solid line�.
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rescu et al. �24� that in the secular approximation, the spec-
tral line of the cavity field can be narrowed to the quantum
limit. Here, we will illustrate that the linewidth of the spec-
trum can be further reduced that it may go below the quan-
tum limit if the nonsecular processes are included into the
dynamics of the system.

The steady-state spectrum of the cavity field is defined as
the Fourier transform of the two-time correlation function
�a†�t�a�s of the cavity field operators. In the interaction pic-
ture, the spectrum takes the form

S��� = 2 Re

0

�

dtei��−�L�t�a†�t�a�s, �28�

where � is the spectral frequency, the subscript s represents
the average over the steady-state values of the field opera-
tors, and the operators without time argument refer to their
steady-state values.

We may write the cavity field operators in the form a�t�
= �a�t��+�a�t�, where �a�t� are the fluctuations operators that
describe fluctuations of the cavity field about its average
value. In this case, the spectrum can be decomposed into a
sum of two terms

S��� = Sel��� + Sin��� , �29�

where

Sel��� = 2�a†�s�a�s��� − �L� �30�

is the elastic component of the spectrum, and

Sin��� = 2 Re

0

�

dtei��−�L�t�a†�t�,a�s �31�

is the inelastic component with

�a†�t�,a�s = �a†�t�a�s − �a†�t��s�a�s. �32�

In order to calculate the two-time correlation function ap-
pearing in Eq. �31�, we make use of the quantum regression
theorem �32,33� from which it is well known that the two-
time correlation functions obey the same equations of motion
for t	0 as the corresponding one-time correlation functions.
Therefore, we may use Eqs. �20� and �21� to compute the
spectrum. The spectrum depends, of course, on the state of
the system which we take to be the stationary state.

We will compute numerically the spectra using the equa-
tions of motion �20� and �21�. However, in order to gain
insight into the physics involved, we will present an analyti-
cal solution for the case of �c=0.

For purposes of numerical computation, it is convenient
to take the Laplace transform of the equations of motion for
the correlation functions that transforms them into a set of
algebraic equations, and evaluate the spectrum from

Sin��� = �2 Re��a†�p�,a�s��p=i��−�L�, �33�

where p is a complex Laplace transform parameter. The ex-
act solution for the Laplace transform of the correlation func-
tion with �c=0 is given in Appendix B. We use this exact
solution to evaluate the spectrum in the presence of the non-
secular processes. We compare the spectra with those ob-

tained under the secular approximation where the nonsecular
processes are ignored. The results are show in Figs. 4 and 5.

Let us first compare the spectra obtained with the non-
secular processes with that obtained under the secular ap-
proximation. Figure 4 shows the incoherent part of the spec-
trum of the cavity field in the band-gap material
configuration with �−=0.0001�+. The spectrum consists of a
single line centered at frequency �=�L whose profile de-
pends on whether the nonsecular processes are or are not
included. The shape of the line is not exactly a Lorentzian
when the nonsecular processes are included, but becomes a
Lorentzian when these processes are ignored. One may no-
tice a significant linewidth narrowing below the natural
width when the nonsecular processes are included.

Figure 5 illustrates the effect of the cavity detuning on the
spectrum. We see that the maximum narrowing of the spec-
tral line actually occurs not at �c=0 but for the detuning
�c=−0.26� that, according to Fig. 3, corresponds to the
maximum squeezing in one of the quadrature phase compo-

FIG. 4. The incoherent part of the spectrum of the cavity field as
a function of the frequency ��−�L� /� calculated with �solid line�
and without �dashed line� the nonsecular terms for �− /�+=0.0001
and �c=0. All other parameters are the same as in Fig. 1.

FIG. 5. The incoherent part of the spectrum of the cavity field as
a function of the frequency ��−�L� /� for different detunings �c:
�c=0 �dashed line�, �c=−0.16 �dotted line�, and �c=−0.26 �solid
line�. All other parameters are the same as in Fig. 1.
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nents of the cavity field. This indicates that the spectrum may
be directly affected by squeezing in the cavity field.

In order to gain insight into the source of the narrowing of
the spectral line, we take the limit of �c=�a=0, �−=0 and
derive from the general solution, Eq. �B1�, a simple analyti-
cal formula for the spectrum

Sin��� =
16�g1

4

�2��2 + 4�� − �L�2�2 . �34�

This result is in marked contrast to that obtained under the
secular approximation �24�. In the case of vanishing mode
density on the lower Mollow sideband ��−=0, which corre-
sponds to a full photonic band gap� and no dipolar dephasing
��p=0�, the spectrum of the cavity field consists only of the
elastic component under the secular approximation �24�.
When the nonsecular processes are included, the incoherent
part of the spectrum is present and shows an interesting
property that instead of being a simple Lorentzian, it is in-
stead in the form of a squared Lorentzian.

It is well known that a squared Lorentzian can be decom-
posed into a difference between two Lorentzians �34–36�.
The immediate consequence of one of the Lorentzians being
negative is to produce a spectrum which fell off as �−4 in the
wings, rather than the �−2, which would result if both
Lorentzians were positive. It has been shown that the nega-
tive weight of one of the Lorentzians can be related to
squeezing in the field. Thus, the narrowing of the spectral
line, seen in Figs. 4 and 5 can be related to squeezing pro-
duced in the nonlinear interaction of the cavity field with the
dressed atom. Physically, this effect can be best understood
and explained in terms of the so-called squeezing spectrum.
The incoherent spectrum can be decomposed into the sum of
two phase-dependent squeezing spectra

Sin��� = 1
4 �X+��� + X−���� , �35�

where

X+��� = 

−�

�

dtei��−�L�t�:X+�t�,X+:� ,

X−��� = 

−�

�

dtei��−�L�t�:X−�t�,X−:� , �36�

are the squeezing spectra of the normally ordered quadrature
phase components of the cavity field amplitude. Negative
values in the squeezing spectra indicate squeezed fluctua-
tions of the cavity field.

Figure 6 shows the incoherent spectrum together with the
squeezing spectra calculated for the same parameters as in
Fig. 5, but with �c=−0.26� corresponding to the maximum
squeezing in the X+ quadrature components of the cavity
field. We see that the squeezing spectrum X+��� is negative
over the whole range of frequencies. The fact that X+��� is
negative indicates that the X+ quadrature component, that is
obtained by an integration of the squeezing spectrum X+���
over the frequency �, is squeezed. Thus, we may conclude

that the spectral linewidth narrowing is due to the common
effect of squeezing and the frequency-dependent reservoir
formed by the photonic band-gap material.

VII. CONCLUSIONS

We have examined nonclassical and spectral features of a
single-atom laser without the use of the secular approxima-
tion for the interaction of the cavity field with a dressed-atom
system located inside a photonic band-gap material. The ma-
terial appears as a frequency-dependent reservoir for the
dressed atom. The inclusion of the nonsecular terms leads to
an effective double coupling of the cavity field to the dressed
states of the system. We have found that by a suitable match-
ing of the dressed-atom transition frequencies to the guiding
frequency of the band-gap material, it is possible to account
for squeezing and narrowing of the spectral line of the cavity
field below the quantum shot noise limit. These features are
achieved by a combination of a strongly frequency-
dependent reservoir and the nonsecular processes. The non-
linear processes are absent under the secular approximation
and present a newly encountered feature of a single-atom
laser.
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APPENDIX A

In this appendix, we present the exact steady-state solu-
tion of the equations of motion �20� and �21� for the case of

FIG. 6. The incoherent part �solid line� of the cavity field spec-
trum together with the squeezing spectra X+��� �dotted line� and
X−��� �dashed line� plotted as a function of ��−�L� /� for �c=
−0.26� and �=0.8. All other parameters are the same as in Fig. 5.
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�c=0 that includes all nonsecular terms up to the order
g4 /�2,

�a�s = − 2g1�2�F1 + �2��2�1 + ��2�/K1, �A1�

�a2�s = ��− 2�� − ���F2 + 8g1
2�F3�F4

+ 4g1
2�1 −

4�

�2
F5��K2 − �� − ���/�2�2� ,

�A2�

�a†a� = 2��� − ���2F2 − 4g1
2��� − ���F3 + 2g1

2F5�/K2,

�A3�

�R3a†a�s =
1

�� + �1�K2�2
�− 2�� − ���2x0F2 + 8g1

2��� − ���

�x0F3 − 4g1
2��2

2 + 4��� − ����F5 − 4g1
2��2

2

���� + 2�1�2 − 4����K3 − �� − ���2K2/2� , �A4�

�R3a�s =
2g1

K1
�− 4���1 + 2�2����� + 2�2��2 + 4�2

2 + 4��1��

+ ����1 + 2�2
2��2�1 + ��� , �A5�

�R3a2�s =
2

�� + �1�
���� − ���x1F2 − 4g1

2�x1F3 + 2g1
2x2F5�/K2

+ x3/4� , �A6�

where

F1 = − 4����1 − 2�2��� + �2�1 + �����1 + 2�2
2� ,

F2 = 16�����3�1 − 4�3�1�� + �1�2 + 2�1
3 + ��2

2 − �1
2��� + 5�1��

������2 + ��1�2�2�1 + ��2 + 2�� + �1����1 + �2
2�

���� + �1�2 + 2�2
2 − �1

2����� − �2�� + �1����1 + �2
2�

��2�1 + ��2/4,

F3 = 32�����2�1 − 8����1 + 2�2
2��2�1 + �� + �� + �1����1

+ �2
2����� + �2�1 + ����1� + 2�2

2��2�2 + 2��1 + �2
2�

+ �2
2�2�1 + ��2��1 + 2�� − 4�2

2��1 + ����1
2 − �2

2� ,

F4 = ���� + �1� − 4����/�2 + � + ��,

F5 = − 64�����3�1 + 16��3��1 + 2�2
2��� + �1�

+ �1�3�2
2 + ��1�������2 − 4����1 + 2�2

2��2�1 + ���2��1

+ 2�2 + �2
2� + �1�2�� + �1�2���� + �2�2�1 + ��

����1 + 2�2
2��� + �1�2,

and

K1 = ��4��� − ��2�1 + ���2 − 16�2
2�����1,

K2 = „256�����4 − 64�4�2 + 6��1 + 5�2
2������3

+ 16�2��2 + 2��1 + 2�2
2��2�2 + 2��1 + �2

2�

+ �2��2�1 + ��2 + �� + �1�2�������2

− 4�2�2��2 + 2��1 + 2�2
2���1 + ��2 + �2�2

+ 2��1 + �2
2��� + 2�1�2���� + �4�� + �1�2

��� + 2�1�2
…�1,

K3 = �4��� − ���1 + ���2 − 4�2
2���,

with

x0 = �2
2 + ��� + �1� − 4���,

x1 = x0�� + ���/�2 + ��� + �1� ,

x2 = − �2 + 4��� + ���/�2,

x3 = ��2 − ��2�/�2 − 8g1
2��2��� + 2�1�2 − 4����K3/K2,

� = i
g2

2�
,

�� = i
g2�s2 − c2�2

2�
.

APPENDIX B

In this appendix, we present the Laplace transform of the
two-time correlation function of the cavity field operators
appearing in the expression for the incoherent part of the
spectrum. We have applied the quantum regression theorem
to Eqs. �20� and �21� and calculated the Laplace transform
with the initial condition given by the stationary solutions
listed in Appendix A for the case of the cavity frequency
tuned on resonance with the central frequency of the dressed-
atom system, �c=0,

�a†�p�,a�s =
m4p4 + m3p3 + m2p2 + m1p + m0

2�p + �1�D�p�
, �B1�

where

D�p� = ����2
2 − ��p +

�

2
�p +

�

2
+ �1 − ����2

, �B2�

and
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m0 = �2�g1�R3a�s + �1�a†a�s���1 + �/2� + ��� − ����R3a2�s + �� + ����R3a†a�s��1��− ���1 + �/2�/2 + ���� + 2�1����1 + �/2�

− 2������1 + ���a�s�a†�s + �2��1 + �/2���1��� + ����a†a�s + �� − ����a2�s� + 2g1��R3a�s� + 2�1�2����R3a†a�s

+ 2g1��1��2 − ����1 + �� + �2���1
2 − �2/4 + �1�/2 + �2� + ����/�2�1���a�s,

m1 = �2g1�R3a�s + �4�1 + ���a†a�s + �� − ����R3a2�s + �� + ����R3a†a�s��− ���1 + �/2�/2 + ���� − ��1 + ���2�g1�R3a�s

+ �1�a†a�s���1 + �/2� + �1�� − ����R3a2�s + �1�� + ����R3a†a�s� + 2��1���1 + ��2 + ���1 + �/2� − 2����

+ ����1 + �/2� − 2������1 + ����a�s�a†�s + ��2�1 + �/2���� + ����a†a�s + �� − ����a2�s� + 2g1��R3a�s + 2����R3a†a�s��2

+ 2g1���2 − ���2�1 + �� + �2�/2��a�s,

m2 = − ��� − ����R3a2�s + �� + ����R3a†a�s��� + 2�1� − g1�4�1 + 3���R3a�s + �− �1�4�1 + 3�� − �3�/2 + �1��� + 2�1� + �2��

+ ��� + 2�����a†a�s + �2�� − ����a2�s + 2���1 + ��2 + 2�1��1 + �� + ���1 + �/2� − 2�����a�s�a†�s + 2g1��2 − ���a�s,

m3 = − �� − ����R3a2�s − �� + ����R3a†a�s − 2g1�R3a�s − 3�2�1 + ���a†a�s + 2�3�1 + 2���a�s�a†�s,

m4 = 2��a�s�a†�s − �a†a�s� .
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