3 research outputs found

    Integrating Peridynamics with Material Point Method for Elastoplastic Material Modeling

    Get PDF
    © Springer Nature Switzerland AG 2019. We present a novel integral-based Material Point Method (MPM) using state based peridynamics structure for modeling elastoplastic material and fracture animation. Previous partial derivative based MPM studies face challenges of underlying instability issues of particle distribution and the complexity of modeling discontinuities. To alleviate these problems, we integrate the strain metric in the basic elastic constitutive model by using material point truss structure, which outweighs differential-based methods in both accuracy and stability. To model plasticity, we incorporate our constitutive model with deviatoric flow theory and a simple yield function. It is straightforward to handle the problem of cracking in our hybrid framework. Our method adopts two time integration ways to update crack interface and fracture inner parts, which overcome the unnecessary grid duplication. Our work can create a wide range of material phenomenon including elasticity, plasticity, and fracture. Our framework provides an attractive method for producing elastoplastic materials and fracture with visual realism and high stability

    Opportunities and challenges for an Indonesian forest monitoring network

    Get PDF
    © 2019, INRA and Springer-Verlag France SAS, part of Springer Nature. Key message: Permanent sampling plots (PSPs) are a powerful and reliable methodology to help our understanding of the diversity and dynamics of tropical forests. Based on the current inventory of PSPs in Indonesia, there is high potential to establish a long-term collaborative forest monitoring network. Whilst there are challenges to initiating such a network, there are also innumerable benefits to help us understand and better conserve these exceptionally diverse ecosystems
    corecore