168 research outputs found

    David gegen Goliath : wie Viren das Immunsystem ĂĽberlisten

    Get PDF
    Infektionen mit Herpesviren sind bereits seit der Antike bekannt. So beschrieb zum Beispiel schon Hippokrates in seinem »Corpus Hippocraticum« die sich auf der Haut ausbreitenden Herpes Simplex Läsionen und gab der Krankheit ihren bis heute gültigen Namen. Verbürgt ist auch, dass der römische Kaiser Tiberius vor etwa 2000 Jahren während einer auftretenden Herpes labialis-Epidemie das Küssen bei öffentlichen Zeremonien per Dekret verbat. Shakespeare war ebenfalls bestens vertraut mit den periodisch auftretenden Herpes-Bläschen; in seinem Werk »Romeo & Julia« spricht Mercutio zu Romeo: »O’er ladies lips, who straight on kisses dream, which oft the angry Mab with blisters plagues, ….« Doch erst in den 1960er Jahren erkannte man die virale Herkunft der Erkrankung

    Stirb an einem anderen Tag : Virus versus Immunsystem

    Get PDF
    Jeder Mensch kämpft täglich erfolgreich mit Krankheitserregern, ohne dass er sich der komplexen molekularen Vorgänge dabei bewusst wäre. Wie in einem Hollywood-Streifen geht es rasant zur Sache. Ist das Immunsystem angeschlagen oder trifft es auf starke Gegner, kann eine Infektion binnen weniger Tage außer Kontrolle geraten und lebensbedrohliche Reaktionen hervorrufen. Der menschliche Organismus benötigt eine effiziente Verteidigungsstrategie gegen die Eindringlinge und muss, ebenso wie der britische Geheimdienst im Bond-Film, in die Ausbildung geübter Agenten investieren, Agenten mit Doppel-Null-Status. Agenten wie James Bond

    »Small is beautiful« : Bioforschung in der Nanowelt

    Get PDF
    Im Zuge der steigenden Bedeutung der Proteomforschung und der »Molekularisierung« der Medizin werden neue, effizientere Plattformen zur Untersuchung von Proteinen und deren Wechselwirkungen notwendig. Hier bietet die Nanotechnologie, eine Wissenschaft mit Ursprüngen in der Physik und der Halbleiterindustrie, attraktive Lösungsperspektiven. Ein Bereich der Forschung am Institut für Biochemie der Universität Frankfurt um Prof. Dr. Robert Tampé widmet sich den Aspekten der Nanotechnologie zur Entwicklung von Protein-Chips für die Proteomforschung und Erzeugung von Mustern im Kleinstformat

    Time-Resolved Mn2+–NO and NO–NO Distance Measurements Reveal That Catalytic Asymmetry Regulates Alternating Access in an ABC Transporter

    Get PDF
    ATP-binding cassette (ABC) transporters shuttle diverse substrates across biological membrane. Transport is often achieved through a transition between an inward-facing (IF) and an outward-facing (OF) conformation of the transmembrane domains (TMDs). Asymmetric nucleotide-binding sites (NBSs) are present among several ABC subfamilies and their functional role remains elusive. Here we addressed this question using concomitant NO–NO, Mn2+–NO, and Mn2+–Mn2+ pulsed electron-electron double resonance spectroscopy of TmrAB in a time resolved manner. This type IV ABC transporter undergoes a reversible transition in the presence of ATP with a significantly faster forward transition. The impaired degenerate NBS stably binds Mn2+–ATP and Mn2+ is preferentially released at the active consensus NBS. ATP hydrolysis at the consensus NBS considerably accelerates reverse transition. Both NBSs fully open during each conformational cycle and the degenerate NBS may regulate the kinetics of this process

    Quantum yield optimized fluorophores for site-specific labeling and super-resolution imaging

    Full text link
    Single molecule applications, saturated pattern excitation microscopy, or stimulated emission depletion (STED) microscopy demand for bright and highly stable fluorescent dyes1,2. Despite of intensive research the choice of fluorphores is still very limited. Typically a stable fluorescent dyes is covalently attached to the target. This methodology brings forward a number of limitations, in particular, in case of protein labeling. First of all the fluorescent probes need to be attached selectively and site-specifically to prevent unspecific background. This often requires single cysteine mutations for covalent protein modification. Employing quantum dots allows overcoming problems of photo-bleaching3-6. However, the downsides are their large size, rendering the probe inaccessible to spatially confined architectures, issues in biocompatibility due to proper particle coating, and cellular toxicity6-8. Here we propose a new method to overcome the above outlined problems

    Thermodynamics of the ATPase Cycle of GlcV, the Nucleotide-Binding Domain of the Glucose ABC Transporter of Sulfolobus solfataricus

    Get PDF
    ATP-binding cassette transporters drive the transport of substrates across the membrane by the hydrolysis of ATP. They typically have a conserved domain structure with two membrane-spanning domains that form the transport channel and two cytosolic nucleotide-binding domains (NBDs) that energize the transport reaction. Binding of ATP to the NBD monomer results in formation of a NBD dimer. Hydrolysis of the ATP drives the dissociation of the dimer. The thermodynamics of distinct steps in the ATPase cycle of GlcV, the NBD of the glucose ABC transporter of the extreme thermoacidophile Sulfolobus solfataricus, were studied by isothermal titration calorimetry using the wild-type protein and two mutants, which are arrested at different steps in the ATP hydrolytic cycle. The G144A mutant is unable to dimerize, while the E166A mutant is defective in dimer dissociation. The ATP, ADP, and AMP-PNP binding affinities, stoichiometries, and enthalpies of binding were determined at different temperatures. From these data, the thermodynamic parameters of nucleotide binding, NBD dimerization, and ATP hydrolysis were calculated. The data demonstrate that the ATP hydrolysis cycle of isolated NBDs consists of consecutive steps where only the final step of ADP release is energetically unfavorable.

    Characterization of a transport activity for long-chain peptides in barley mesophyll vacuoles

    Get PDF
    The plant vacuole is the largest compartment in a fully expanded plant cell. While only very limited metabolic activity can be observed within the vacuole, the majority of the hydrolytic activities, including proteolytic activities reside in this organelle. Since it is assumed that protein degradation by the proteasome results in the production of peptides with a size of 3-30 amino acids, we were interested to show whether the tonoplast exhibits a transport activity, which could deliver these peptides into the vacuole for final degradation. It is shown here that isolated barley mesophyll vacuoles take up peptides of 9-27 amino acids in a strictly ATP-dependent manner. Uptake is inhibited by vanadate, but not by NH4+, while GTP could partially substitute for ATP. The apparent affinity for the 9 amino acid peptide was 15 ÎĽM, suggesting that peptides are efficiently transferred to the vacuole in vivo. Inhibition experiments showed that peptides with a chain length below 10 amino acids did not compete as efficiently as longer peptides for the uptake of the 9 amino acid peptide. Our results suggest that vacuoles contain at least one peptide transporter that belongs to the ABC-type transporters, which efficiently exports long-chain peptides from the cytosol into the vacuole for final degradatio

    ABCE1 Controls Ribosome Recycling by an Asymmetric Dynamic Conformational Equilibrium

    Get PDF
    The twin-ATPase ABCE1 has a vital function in mRNA translation by recycling terminated or stalled ribosomes. As for other functionally distinct ATP-binding cassette (ABC) proteins, the mechanochemical coupling of ATP hydrolysis to conformational changes remains elusive. Here, we use an integrated biophysical approach allowing direct observation of conformational dynamics and ribosome association of ABCE1 at the single-molecule level. Our results from FRET experiments show that the current static two-state model of ABC proteins has to be expanded because the two ATP sites of ABCE1 are in dynamic equilibrium across three distinct conformational states: open, intermediate, and closed. The interaction of ABCE1 with ribosomes influences the conformational dynamics of both ATP sites asymmetrically and creates a complex network of conformational states. Our findings suggest a paradigm shift to redefine the understanding of the mechanochemical coupling in ABC proteins: from structure-based deterministic models to dynamic-based systems

    Structure of the ribosome post-recycling complex probed by chemical cross-linking and mass spectrometry

    Get PDF
    Ribosome recycling orchestrated by the ATP binding cassette (ABC) protein ABCE1 can be considered as the final-or the first-step within the cyclic process of protein synthesis, connecting translation termination and mRNA surveillance with re-initiation. An ATP-dependent tweezer-like motion of the nucleotide-binding domains in ABCE1 transfers mechanical energy to the ribosome and tears the ribosome subunits apart. The post-recycling complex (PRC) then re-initiates mRNA translation. Here, we probed the so far unknown architecture of the 1-MDa PRC (40S/30S.ABCE1) by chemical cross-linking and mass spectrometry (XL-MS). Our study reveals ABCE1 bound to the translational factor-binding (GTPase) site with multiple cross-link contacts of the helix-loop-helix motif to the S24e ribosomal protein. Cross-linking of the FeS cluster domain to the ribosomal protein S12 substantiates an extreme lever-arm movement of the FeS cluster domain during ribosome recycling. We were thus able to reconstitute and structurally analyse a key complex in the translational cycle, resembling the link between translation initiation and ribosome recycling

    Varicellovirus UL 49.5 proteins differentially affect the function of the transporter associated with antigen processing, TAP

    Get PDF
    Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing (TAP) plays an essential role in MHC class I–restricted antigen presentation, as TAP imports peptides into the ER, where peptide loading of MHC class I molecules takes place. In this study, the UL49.5 proteins of the varicelloviruses bovine herpesvirus 1 (BHV-1), pseudorabies virus (PRV), and equine herpesvirus 1 and 4 (EHV-1 and EHV-4) are characterized as members of a novel class of viral immune evasion proteins. These UL49.5 proteins interfere with MHC class I antigen presentation by blocking the supply of antigenic peptides through inhibition of TAP. BHV-1, PRV, and EHV-1 recombinant viruses lacking UL49.5 no longer interfere with peptide transport. Combined with the observation that the individually expressed UL49.5 proteins block TAP as well, these data indicate that UL49.5 is the viral factor that is both necessary and sufficient to abolish TAP function during productive infection by these viruses. The mechanisms through which the UL49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 block TAP exhibit surprising diversity. BHV-1 UL49.5 targets TAP for proteasomal degradation, whereas EHV-1 and EHV-4 UL49.5 interfere with the binding of ATP to TAP. In contrast, TAP stability and ATP recruitment are not affected by PRV UL49.5, although it has the capacity to arrest the peptide transporter in a translocation-incompetent state, a property shared with the BHV-1 and EHV-1 UL49.5. Taken together, these results classify the UL49.5 gene products of BHV-1, PRV, EHV-1, and EHV-4 as members of a novel family of viral immune evasion proteins, inhibiting TAP through a variety of mechanisms
    • …
    corecore