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Abstract

The plant vacuole is the largest compartment in a fully expanded plant cell. While only very limited metabolic activity

can be observed within the vacuole, the majority of the hydrolytic activities, including proteolytic activities reside in

this organelle. Since it is assumed that protein degradation by the proteasome results in the production of peptides

with a size of 3–30 amino acids, we were interested to show whether the tonoplast exhibits a transport activity,

which could deliver these peptides into the vacuole for final degradation. It is shown here that isolated barley
mesophyll vacuoles take up peptides of 9–27 amino acids in a strictly ATP-dependent manner. Uptake is inhibited by

vanadate, but not by NHþ
4 , while GTP could partially substitute for ATP. The apparent affinity for the 9 amino acid

peptide was 15 mM, suggesting that peptides are efficiently transferred to the vacuole in vivo. Inhibition experiments

showed that peptides with a chain length below 10 amino acids did not compete as efficiently as longer peptides for

the uptake of the 9 amino acid peptide. Our results suggest that vacuoles contain at least one peptide transporter

that belongs to the ABC-type transporters, which efficiently exports long-chain peptides from the cytosol into the

vacuole for final degradation.
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Introduction

Plant vacuoles are multifunctional organelles that play

a central role during the whole of a plant’s life. While

young cells often contain many small vacuoles, most of the

mature cells have one central vacuole, which occupies up to

90% of the cell volume. In addition, small vacuoles may be

present in these cells. A large number of substances such as

inorganic ions, soluble carbohydrates, organic acids, amino

acids, secondary compounds or modified xenobiotics, but
also hydrolytic and biosynthetic enzymes, can be found

within vacuolar compartments. The vacuole is responsible

for numerous processes, sometimes unique to the plant cell

(Hörtensteiner and Feller, 2002; Martinoia et al., 2007). The

more negative water potential drives the uptake of water

into the large central vacuole, generating the turgor pressure

that enables the cells to expand, as well as to sustain the

shape of non-lignified plants. The vacuole can serve as

a transient storage compartment for nutrients, which can be

released when required for growth and development.

Furthermore, in specialized storage tissues or seeds, the

vacuole can act as a storage compartment for protein. The

vacuole also plays a crucial role in the tight control of

cytosolic concentrations of metabolites and ions for cell
homeostasis. In addition, the vacuole is implicated in

detoxification processes and defence responses by accumu-

lating and sequestrating toxic compounds and defence

molecules.

To facilitate the intensive exchanges that occur between

the cytosol and the vacuole a large number of proteins are
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embedded in the vacuolar membrane. Two proton

pumps, namely the H+-ATPase (V-ATPase) and the H+-

pyrophosphatase (V-PPase), located in all the vacuolar

membranes, generate the electrochemical gradient required

to energize the large majority of the transport mediated by

tonoplast proteins (Sze et al., 1999; Maeshima, 2001). Two

other classes of transporters mediate a directly ATP

energized uptake and allow the accumulation of their
substrates in the vacuole independently of the proton

motive force: cation pumps belonging to the class of the P-

type ATPases and ATP-binding cassette (ABC) transporters

(White and Broadley, 2003; Rea, 2007; Yazaki et al., 2009).

The ATP-binding cassette (ABC) transporters constitute

a large, diverse, ubiquitous superfamily, widespread in

bacteria, fungi, animals, and plants. Most of the ABC

proteins are involved in the directly energized transport of
a large variety of substances across various biological

membranes. Compared with all other organisms, plants

contain by far the most ABC transporters. Most of them

can be grouped into the eight major subfamilies (A–H),

universally shared by living organisms (Verrier et al., 2008).

In plants, ABC proteins have been shown to be implicated

in diverse essential processes such as the vacuolar sequestra-

tion of xenobiotics, heavy metal tolerance, pigment accumu-
lation, auxin transport, alkaloid import at the plasma

membrane, wax deposition on the cuticle, lipid catabolism,

stomatal regulation, disease/pathogen resistance or assembly

of redox-active cytosolic Fe/S proteins (Martinoia et al.,

1993; Lu et al., 1998; Gaedeke et al., 2001; Shitan et al.,

2003; Pighin et al., 2004; Xu and Møller, 2004; Lee et al.,

2005; Geisler and Murphy, 2006; Kim et al., 2007; Rea,

2007; Yazaki et al., 2009). However, the number of
uncharacterized ABC transporters remains high and their

implication in plant metabolism still awaits discovery.

Peptides are implicated in many different processes

occurring in living cells. In mammals they are used, for

example, for antigene processing or as hormones (Parcej

and Tampe, 2007). Furthermore, some antibiotics and

anticancer drugs are peptides (Dantzig et al., 1992; Hori

et al., 1993). In bacteria, peptides can be involved in
quorum sensing (Swift et al., 1996). In plants, during seed

germination, small peptides are produced to supply the

seedling with reduced nitrogen (Higgins and Payne, 1981;

Stacey et al., 2002b). Peptide transporters were identified in

three gene families. Members of the peptide transporter/

nitrate transporter 1 (PTR/NRT1) family recognize di- and

tripeptides, while some members of the oligopeptide trans-

port (OPT) family transport predominantly tetra- and
pentapeptides, though longer or shorter peptides are some-

times also translocated (Tsay et al., 1993; Rentsch et al.,

1995, 2007; Koh et al., 2002; Stacey et al., 2002a; Water-

worth and Bray, 2006; Pike et al., 2009). In mammals, three

members of the ABC transporter superfamily, the so-called

TAPs, have been shown to be involved in the transport of

longer chain peptides. They reside either in the ER, Golgi or

in lysosomal membrane and mediate the transport of
peptides ranging from 6–59 amino acids (Kelly et al., 1992;

Lankat-Buttgereit and Tampé, 2003; Wolters et al., 2005).

Early work on plant vacuoles has shown that vacuoles

contain highly active proteases (Boller and Kende, 1979). It

was suggested that these proteases are implicated in cellular

protein turnover. However, this hypothesis still awaits

confirmation. Proteomic studies using Arabidopsis and

barley vacuolar membranes have revealed a large number

of putative vacuolar transporters with still unknown

function, including also TAP homologues (Carter et al.,
2004; Endler et al., 2006; Jaquinod et al., 2007). It was

therefore of interest to investigate whether vacuoles

exhibited peptide transport activity for larger peptides of

a size between 9 and 30 amino acids.

Materials and methods

Plant material

Barley (Hordeum vulgare L. cv. Baraka) was grown in a controlled
environment chamber [16/8 h light (300 lE m�2 s�1)/dark cycle
at 22 �C and 60% relative humidity].

Isolation of intact vacuoles

Barley mesophyll vacuoles were isolated using a slight modification
of the method described in Rentsch and Martinoia (1991). After
resuspension of the protoplasts, they were collected by centrifuga-
tion (10 min, 200 g) on a cushion of osmotically stabilized Percoll
[500 mM sorbitol, 1 mM CaCl2 (Fluka Buchs, Switzerland), and
20 mM MES, pH 6]. Protoplasts were suspended in 5 ml of
a solution containing 500 mM sorbitol, 30% (v/v) Percoll, 1 mM
CaCl2, and 20 mM MES, pH 6. This suspension was overlayered
with 10 ml medium A [430 mM sorbitol, 25% (v/v) Percoll, 30 mM
K-gluconate (Fluka Buchs, Switzerland), and 20 mM HEPES–
KOH pH 7.2] and 5 ml medium B (430 mM sorbitol, 30 mM
K-gluconate, and 20 mM HEPES–KOH pH 7.2). After centrifu-
gation for 10 min at 200 g, protoplasts were recovered from the
upper interface, mixed with 15% (v/v) medium B including 10 mM
EDTA and forced through a syringe without a needle to liberate
the vacuoles. The protoplasts lysate was suspended in a solution
containing 500 mM sorbitol, 20% (v/v) Percoll, and 20 mM
HEPES–KOH pH 7.2. The suspension was overlayered with 5 ml
of medium B containing 0.1% (w/v) BSA (Fluka Buchs, Switzerland)
and 0.2 mM DTT, and 1 ml medium C (400 mM glycine-betaine,
30 mM K-gluconate, and 20 mM HEPES–KOH pH 7.2), including
0.1% (w/v) BSA and 0.2 mM DTT. After centrifugation for 3 min at
200 g and 5 min 1000 g, vacuoles were recovered from the upper
interface. The last purification gradient was repeated with the
recovered vacuoles, but centrifugation was 5 min at 1000 g. The
purified vacuoles recovered from the upper interface were completed
with Percoll-solution [to a final concentration of 10% (v/v) Percoll,
500 mM sorbitol, and 20 mM HEPES–KOH pH 7.2] and the
suspension was directly used for uptake experiments.

Uptake experiments

Uptake of fluorescein(/)-labelled peptides of 9 aa, RRYC(/)KSTEL;

18 aa, RRYQKSTELRRYC(/)KSTEL; and 27 aa, RRYQKSTELRRYQKSTELR-

RYC(/)KSTEL (Uebel et al., 1997) was measured by a slight
modification of the method described by Martinoia et al. (1993).
For each condition and time point, five polyethylene microcen-
trifugation tubes (400 ll capacity) were prepared as follows: 70 ll
of basal medium (22% Percoll pH 7.2, 430 mM sorbitol, 30 mM
K-gluconate, 20 mM HEPES–KOH pH 7.2, 0.1% BSA, and
0.2 mM DTT) containing 0.1 lCi 3H2O, 2 lM of one of the
fluorescein-labelled peptides and solutes as indicated in the figures
were placed in the bottom of the tubes. Experiments were started
by the addition of 30 ll of the vacuole suspension. Samples were
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rapidly overlayered with 200 ll silicone oil AR 200 and 60 ll
medium C described above. Incubation was interrupted by
centrifugation at 10 000 g for 20 s. The fluorescent peptides
contained in medium C were quantified using a fluorescence plate
reader (k ex/em 485/520 nm; Fusion, Packard). 3H2O equilibrates
rapidly between the medium and the vacuolar space and was used
to quantify the number of vacuoles by scintillation counting.

For competition experiments, randomized peptide libraries were
added (Uebel et al., 1997).

HPLC analysis

Iodoacetamidefluorescein, the fluorescent-labelled 27 aa peptide
and the corresponding degradation products were analysed by C18
reversed phase HPLC (PerfectSil-300-ODS-C18, 25034.6 mm, 5
lm particle diameter, MZ Analysentechnik, Mainz, Germany)
using 100 mM ammonium acetate, pH 6.5 as solvent A and 50%
(v/v) acetonitrile in 100 mM ammonium acetate, pH 6.5 as solvent
B (linear gradient from 15–55% B in 20 min, flow rate of 1 ml
min�1). Fluorescent products were detected by a fluorescence
detector (Shimadzu RF 935) with ex/em¼470/520 nm.

Results

Time-dependent uptake of fluorescein-labelled peptides

To characterize a hypothetical vacuolar peptide trans-

porter in plants, highly purified barley mesophyll vacuoles

were isolated. Transport assays were performed using three

peptides of different size, i.e. a 9 amino acid (aa) (RRYC(/)K-

STEL), an 18 aa (RRYQKSTELRRYC(/)KSTEL), and a 27 aa
(RRYQKSTELRRYQKSTELRRYC(/)KSTEL) peptide, where / sym-

bolizes the fluorescein fluorophore. Uptake experiments were

performed using a peptide concentration of 2 lM in the

presence or absence of 4 mM MgATP. Uptake of all three

peptides was strictly MgATP-dependent (Fig. 1A, B, C). In

the absence of MgATP, no increase in fluorescence could be

observed, while in the presence of MgATP, efficient peptide

uptake occurred. This peptide uptake was linear for at least
20 min. The ATP-dependent transport rates increased with

the size of the peptide. They were 0.5960.14, 0.8860.13, and

1.7860.50 pmol ml�1 min�1 for the 9, 18, and 27 amino acid

peptides, respectively. To prove that the peptides and not the

free fluorescein is accumulated in the vacuoles, the vacuolar

samples were analysed using HPLC (Fig. 2). Iodoacetamide-

fluorescein, the compound used to label the peptides is eluted

after 18 min (Fig. 2A), Iodoacetamidefluorescein is hydro-
lysed to acetamidefluorescein in water. Due to unknown

reasons, two hydrolysis products are formed (Fig. 2A). For

the 27 aa peptide, several products could be detected,

probably due to different intramolecular interactions. Three

predominant peaks were observed at 8.4, 9.6, and 13.7 min

(Fig. 2B). Products with the same retention time could be

detected in vacuoles, which were incubated for 18 min in the

presence of the 27 aa peptide, and separated from the
incubation solution prior to analysis (Fig. 2C). One addi-

tional peak, probably corresponding to a hydrolysis product

of iodoacetamidefluorescein, emerged (Fig. 2C). As shown in

Fig. 2D, the HPLC profile changed when vacuoles were kept

at room temperature for 45 min after incubation with the

fluorescent peptide. These results indicate that peptides are

taken up by vacuoles and readily degraded by proteases

present in the vacuole. However, these experiments cannot

entirely rule out the possibility that a low amount of free

fluorescein is taken up by vacuoles.

Energization of the peptide transport

Vacuoles have an acidic pH, therefore, the ATP-dependent

peptide transport into barley vacuoles might occur by

a secondary energized mechanism utilizing the proton

motive force. Alternatively, direct MgATP-hydrolysis by

Fig. 1. Time-dependent uptake of peptides into isolated barley

mesophyll vacuoles. Vacuoles were incubated with 2 lM of three

different fluorescein(/)-labelled peptides; 9 aa: RRYC(/)KSTEL (A),

18 aa: RRYQKSTELRRYC(/)KSTEL (B), and 27 aa: RRYQKSTEL-RRYQKSTELR-

RYC(/)KSTEL (C) in the absence (white triangles) or presence (black

triangles) of 4 mM MgATP. Peptide transport was quantified by

fluorescence detection as described in the Materials and methods.

At the time points indicated, incubation was interrupted by

removing vacuoles from the incubation medium via centrifugation

through silicon oil. Each time point is the mean of five replicates,

and error bars represent SD.
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ABC-type transporters may energize uptake. To distinguish

between these two mechanisms, transport experiments were

performed using different inhibitors. Since uptake was

linear for at least 20 min, peptide uptake rates were

determined by using the values for 2 min and 20 min. This

allowed correcting for unspecific adsorption. Compared

with transport rates in the presence of MgATP (100%),

MgGTP, which is known to be able partially to substitute

for MgATP in the case of ABC transporters, was able to

catalyse peptide transport to 30–50% (Fig. 3). Interestingly,

MgGTP was more efficient in energizing transport of the

longer peptides. The non-hydrolysable ATP analogue,

AMP-PMP failed to catalyse uptake, indicating that energy

is required to drive the transport of these peptides.

Valinomycin, a K+-specific ionophore, which dissipates the

membrane potential, and bafilomycin, a highly specific

Fig. 2. HPLC analysis of peptides in vacuolar fractions. HPLC profiles of: iodoacetamidefluorescein after 1 h incubation in water (A), the

27 aa peptide (B), vacuoles incubated for 18 min with the 27 aa peptide and directly subjected to HPLC after separation from the

incubation medium (C), and vacuoles which after 18 min incubation with the 27 aa peptide and purification were kept for 45 min in

medium B at room temperature (D).

Fig. 3. Effect of nucleotides and inhibitors on peptide uptake. Comparison of the transport activities of labelled 9 aa (A), 18 aa (B), and

27 aa (C) peptides in response to nucleotides (MgATP, MgGTP, and AMP-PNP, 4 mM) and inhibitors (0.5 mM vanadate, 10 lM

valinomycin, and 0.1 lM bafilomycin). Peptide transport was quantified by fluorescence detection and transport activities were related to

transport in the presence of MgATP (100%). Values are means of two to three independent experiments each with five replicates, error

bars represent SD. Significance using the Student t test: (A) all P-values <0.0002; (B) P-values GTP, 0.0052; AMPPNP, 0.0017;

vanadate, 0.0002; (C) GTP, 0.0049; AMPPNP, <0.0001; vanadate, 0.028; valinomycin, 0.0017.
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inhibitor of the vacuolar H+-ATPase, did not inhibit the

transport of the 9, 18, and 27 aa peptides. Interestingly,

valinomycin even had a promoting effect on the uptake of

the 27 aa peptide. Vanadate, an efficient inhibitor for most

ABC-type protein-mediated transport processes, also

inhibited the ATP-driven peptide transport. This inhibition

was more pronounced (80%) for the shorter peptides, while

transport of the 27 aa peptide was only inhibited by 50%
(Fig. 3).

Since the inhibitory effect of vanadate at a concentration

of 0.5 mM was different for short and long peptides, we

wondered whether the concentration-dependence of the

inhibition by vanadate was different for the 9 aa and 27 aa

peptides. Raising the vanadate concentration did not

consistently lead to a stronger inhibition than observed at

0.5 mM (Fig. 4). Furthermore, the concentration required
to inhibit the transport rate to 50% of the maximal

vanadate inhibition (IC50), were 75 lM and 80 lM, for the

9 aa and 27 aa peptides, respectively. Similar IC50 values

have already been reported for other ABC-mediated trans-

port processes (Wolters et al., 2005).

The affinity for MgATP has also been determined using the

9 aa peptide. The data fitted to the Michaelis–Menten equation

revealed an apparent KMgATP
m value of 146.6693.7 lM

(Fig. 5), a value which is similar to the affinity reported for

other ABC transporters (Rea et al., 1998).

Concentration-dependency of the peptide transporter
and impact of the peptide length

As shown in Fig. 6, transport rates for the 9 aa peptide

followed Michaelis-Menten kinetics. As this experiment

required a large amount of peptide, increasing the concen-

tration until reaching saturation was not possible. From the
data available, an apparent Kpep

m of about 15 lM and

a maximal transport activity (Vmax) of about 8 pmol

ll�1 min�1 were determined.

Furthermore, it was of interest to investigate how the

transport of the 9 aa peptide was affected by peptides of

different length. To this end, uptake experiments were

performed using 2 lM of the fluorescent 9 aa peptide in the

presence of 20 lM of unlabelled randomized peptide

libraries of increasing size (Xi, i¼4, 7, 10, 11, 17, 23, 35,

and 53 residues; Fig. 7; Uebele et al., 1997). The advantage

of randomized peptide libraries is that they do not relay on

a single sequence and hence reflect the competition by

peptides unrelated to the fluorescent peptide used in uptake

studies. The transport activity of the labelled peptide was
not reduced in the presence of small peptides of four amino

Fig. 4. Inhibition of 9 aa and 27 aa peptide uptake rates as

a function of the orthovanadate concentration. Uptake of

fluorescein-labelled 9 aa (black squares) and 27 aa (black triangles)

peptides into barley mesophyll vacuoles was determined in the

presence of increasing orthovanadate concentrations. Transport

assays were carried out in the presence of 4 mM MgATP. Uptake

in the absence of orthovanadate was set as 100%.

Fig. 5. MgATP concentration dependent uptake of the 9 aa

peptide. Uptake of the 9 aa peptide is dependent on the MgATP

concentration. ATP dependency of the fluorescein-labelled 9 aa

peptide (black squares) transport activity was established by

increasing MgATP concentrations. Barley mesophyll vacuoles

were incubated for 20 min in the presence of 2 lM 9 aa peptide.

MgATP concentrations were kept constant by the addition of

phosphocreatine (10 mM) and phosphocreatine kinase

(16 U ml�1). Peptide transport was quantified by fluorescence

detection and inhibition of the transport activity was related to

transport in the absence of vanadate (100%). Results are means of

two experiments per peptide. Each concentration is the mean of

two independent experiments, each with five replicates and

error bars represent SD.

Fig. 6. Concentration-dependent uptake of the 9 aa peptide in

barley mesophyll vacuoles. Vacuoles were incubated for 20 min in

the presence of 4 mM MgATP and fluorescein-labelled peptide

(RRYC(/)KSTEL). Concentration dependence of the peptide

transport activity was determined by increasing the peptide

concentration. The data were fitted to the Michaelis–Menten

equation. Peptide transport was quantified by fluorescence de-

tection. Each concentration is the mean of five replicates and error

bars represent SD.
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acids. The peptide with 7 aa exhibited 20% inhibition, while

the peptide with 10 and more aa inhibited uptake of the

9 aa peptide by about 50%. This value can be expected

taking into account a Km of 15–20 lM for the 9 aa peptide.
These experiments indicate that the transporter does not

strongly discriminate between different peptides with the

same size. Longer peptides had the tendency to be slightly

more inhibitory (Fig. 7). This inhibition study suggests that

while the transport activity increases with the size of the

peptide (Fig. 7) the affinity of the transporter for the longer

chain peptides remains the same.

Discussion

Peptides play an important role not only in nitrogen

nutrition but also in various processes occurring within

living cells (Higgins and Payne, 1981; Stacey et al., 2002b).
Despite the identification of a large number of putative

peptide transporters in the Arabidopsis genome, little is

known about their activity, localization, and involvement in

whole plant metabolism. All plant peptide transporters

described so far transport small peptides up to five amino

acids. Only AtOPT6 was shown to transport peptides as

long as 13 amino acids (Pike et al., 2009). Large peptides

may be generated by endoproteases as well by the protea-
some complex. The universal ubiquitin–proteasome com-

plex pathway is the best-defined protein degradation

pathway (Smalle and Viestra, 2004). The proteasome

complex exhibits three proteolytic activities, a chymotryp-

sin-like, a trypsin-like, and a peptidyl-glutamyl peptide-

hydrolysing activity. Combined together, these proteases

generate peptides of a size between 3 and 30 amino acids.

The ubiquitin–proteasome complex pathway together with

the less-well characterized cytoplasmic and plastid degrada-

tion pathways produce the major part of the peptides found

in the plant cell (Sakamoto, 2006). So far, the subsequent

step of this protein turnover process, i.e. the final degrada-

tion of the resulting peptides leading to the production of
amino acids, which can be reused for de novo protein

synthesis, is less understood. Since a long time, the presence

of hydrolytic enzymes in vacuoles had been demonstrated

(Boller and Kende, 1979). It was, however, not clear

whether peptides have to be imported into the vacuole for

their final degradation.

In contrast to plants, transporters for long-chain pep-

tides have been well characterized in animals. These trans-
porters belong to the so-called TAP (Transporter

associated with Antigenic Processing) family. In humans,

TAP1 (ABCB2) and TAP2 (ABCB3) form a heterodimer

which transports peptides generated by the proteasome

complex into the ER where they are loaded onto a newly

synthesized MHC class I complex. The MHC I-peptide

complex is exported to the cell surface to be exposed to

T-cells. By means of its function, this heterodimer was
shown to play a central role in the immune system.

(Trowsdale et al., 1990; Bahram et al., 1991, Higgins, 1992;

Abele and Tampé, 2004). In mammals, the third member of

this family is the so-called TAP-like protein, which forms

homodimers and was shown to be a peptide transporter

located in the lysosomal membrane (Wolters et al., 2005;

Demirel et al., 2007).

The finding of TAP-like transporters in the plant
vacuolar membrane by different proteomic approaches

encouraged the investigation of the vacuolar transport

activity for larger peptides (Endler et al., 2006). Peptides

were chosen with similar amino acid sequences as used to

characterize the human TAP heterodimer mediating peptide

transport (Lankat-Buttgereit and Tampé, 2003). All three

fluorescein-labelled peptides tested were transported across

the tonoplast in a strictly ATP-dependent way. As expected
for an ABC-transporter-mediated uptake, GTP but not

AMP-PMP could substitute for ATP. Furthermore, peptide

transport was inhibited by vanadate, but not by bafilomycin

or valinomycin. Vanadate inhibition was more pronounced

for shorter peptides, whereas the transport of the 27 aa

peptide was inhibited only by about 50%. Valinomycin

increased the transport activities in the case of larger

peptides (Fig. 3). This stimulating effect of valinomycin
could be related to the excess of positive charges, as the

longer peptides used in this study contained an increased

number of positive charges. Destroying the trans-vacuolar

membrane potential may, therefore, reduce the energy for

the transfer of the peptides and this would be most

pronounced for the 27 aa peptide, since it contains six net

positive charges.

Our data suggest that the vacuole has at least one ABC-
type protein that transports peptides from the cytosol into

the vacuole. The transporter exhibited an apparent affinity

Fig. 7. Inhibition of the uptake of the 9 aa peptide by peptides of

increasing size. Transport activities were determined by incubating

barley mesophyll vacuoles in the presence of the fluorescein-

labelled 9 aa peptide (RRYC(/)KSTEL), 4 mM MgATP, and one of

the non-labelled randomized peptide libraries of different length (Xi,

i¼4,7,10, 11, 17, 23, 35, and 53 residues, see the Materials and

methods). The concentration of labelled peptide was 2 lM, non-

labelled peptides were added at a 10-fold excess (20 lM) and

incubation time was 20 min. Peptide transport was quantified by

fluorescence detection and transport rates were related to trans-

port in the absence of a non-labelled peptide (100%). The data

represent means of two to three independent experiments each

with five replicates for each Xi aa peptide, error bars represent SD.
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of approximately 15 lM for 9 aa peptides, which is similar

to that of the human ABCB9/TAPL (6.8 lM) (Wolters

et al., 2005). This high affinity of the transporter indicates

an efficient transport of the peptides from the cytosol into

the vacuole. It is likely that the peptides transported into

the vacuole are subsequently degraded to free amino acids

by vacuolar endoproteases and exopeptidases. It is therefore

hypothesized that the proteasome and perhaps other, so far
unknown, cytosolic proteolytic activities produce peptides

which are readily transported into the vacuole in order to be

degraded and recycled to sustain plant metabolism.

Whether peptides generated by plastidic proteases are ex-

ported into the cytoplasm and finally transported into the

vacuole is so far unknown. TAP-like plant transporters have

been localized in the vacuolar membrane using a GFP fusion

protein as well as by proteomic approaches (Yamaguchi
et al., 2002; Endler et al., 2006). Further studies will show

whether these TAP-like proteins act as long-chain peptide

transporters in plants as well. Arabidopsis AtTAP2/

AtABCB27/ASL1 and the barley TAP, HvID17, have been

proposed to be related with other processes. HvID17

expression is strongly induced by iron deficiency and

therefore HvD17 has been proposed to be implicated in iron

homeostasis (Yamaguchi et al., 2002). However, this hy-
pothesis is based only on the strongly increased expression of

HvID17 during iron starvation and it cannot be excluded

that iron starvation leads to an increased protein turnover

and peptide import into the vacuole. AtTAP2/AtABCB27

has been proposed to be involved in aluminium tolerance,

since the corresponding knock-out mutant exhibited reduced

root growth when grown on Al3+ containing medium

(Jaquinod et al., 2007; Larsen et al., 2007). Further studies
are required to identify which transporter is responsible for

the long-chain peptide transport and which role these

transporters play in nitrogen metabolism of the plant and
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