166 research outputs found

    Structural characterization of EGFR exon 19 deletion mutation using molecular dynamics simulation

    Get PDF
    Epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor important in diverse biological processes including cell proliferation and survival. Upregulation of EGFR activity due to over-expression or mutation is widely implicated in cancer. Activating somatic mutations of the EGFR kinase are postulated to affect the conformation and/or stability of the protein, shifting the EGFR inactive-active state equilibrium towards the activated state. Here, we examined a common EGFR deletion mutation, Δ746ELREA750, which is frequently observed in non-small cell lung cancer patients. By using molecular dynamics simulation, we investigated the structural effects of the mutation that lead to the experimentally reported increases in kinase activity. Simulations of the active form wild-type and ΔELREA EGFRs revealed the deletion stabilizes the αC helix of the kinase domain, which is located adjacent to the deletion site, by rigidifying the flexible ÎČ3-αC loop that accommodates the ELREA sequence. Consequently, the αC helix is stabilized in the “αC-in” active conformation that would prolong the time of the activated state. Moreover, in the mutant kinase, a salt bridge between E762 and K745, which is key for EGFR activity, was also stabilized during the simulation. Additionally, the interaction between EGFR and ATP was favored by ΔELREA EGFR over wild-type EGFR, as reflected by the number of hydrogen bonds formed and the free energy of binding. Simulation of inactive EGFR suggested the deletion would promote a shift from the inactive conformation towards active EGFR, which is supported by the inward movement of the αC helix. The MDS results also align with the effects of tyrosine kinase inhibitors on ΔELREA and wild-type EGFR lung cancer cell lines, where more pronounced inhibition was observed against ΔELREA than for wild-type EGFR by inhibitors recognizing the active kinase conformation.</p

    Return of chloroquine-sensitive Plasmodium falciparum parasites and emergence of chloroquine-resistant Plasmodium vivax in Ethiopia

    Get PDF
    BACKGROUND: Increased resistance by Plasmodium falciparum parasites led to the withdrawal of the antimalarial drugs chloroquine and sulphadoxine-pyrimethamine in Ethiopia. Since 2004 artemether-lumefantrine has served to treat uncomplicated P. falciparum malaria. However, increasing reports on delayed parasite clearance to artemisinin opens up a new challenge in anti-malarial therapy. With the complete withdrawal of CQ for the treatment of Plasmodium falciparum malaria, this study assessed the evolution of CQ resistance by investigating the prevalence of mutant alleles in the pfmdr1 and pfcrt genes in P. falciparum and pvmdr1 gene in Plasmodium vivax in Southern and Eastern Ethiopia. METHODS: Of the 1,416 febrile patients attending primary health facilities in Southern Ethiopia, 329 febrile patients positive for P. falciparum or P. vivax were recruited. Similarly of the 1,304 febrile patients from Eastern Ethiopia, 81 febrile patients positive for P. falciparum or P. vivax were included in the study. Of the 410 finger prick blood samples collected from malaria patients, we used direct sequencing to investigate the prevalence of mutations in pfcrt and pfmdr1. This included determining the gene copy number in pfmdr1 in 195 P. falciparum clinical isolates, and mutations in the pvmdr1 locus in 215 P. vivax clinical isolates. RESULTS: The pfcrt K76 CQ-sensitive allele was observed in 84.1% of the investigated P.falciparum clinical isolates. The pfcrt double mutations (K76T and C72S) were observed less than 3%. The pfcrt SVMNT haplotype was also found to be present in clinical isolates from Ethiopia. The pfcrt CVMNK-sensitive haplotypes were frequently observed (95.9%). The pfmdr1 mutation N86Y was observed only in 14.9% compared to 85.1% of the clinical isolates that carried sensitive alleles. Also, the sensitive pfmdr1 Y184 allele was more common, in 94.9% of clinical isolates. None of the investigated P. falciparum clinical isolates carried S1034C, N1042D and D1246Y pfmdr1 polymorphisms. All investigated P. falciparum clinical isolates from Southern and Eastern Ethiopia carried only a single copy of the mutant pfmdr1 gene. CONCLUSION: The study reports for the first time the return of chloroquine sensitive P. falciparum in Ethiopia. These findings support the rationale for the use of CQ-based combination drugs as a possible future alternative

    An extracellular receptor tyrosine kinase motif orchestrating intracellular STAT activation

    Get PDF
    Specificity in signaling activated by receptor tyrosine kinases is typically attributed to characteristics of their intracellular domains. Here, the authors demonstrate that an extracellular receptor sequence motif controls intracellular signaling as a result of extracellular glycan interactions.The ErbB4 receptor isoforms JM-a and JM-b differ within their extracellular juxtamembrane (eJM) domains. Here, ErbB4 isoforms are used as a model to address the effect of structural variation in the eJM domain of receptor tyrosine kinases (RTK) on downstream signaling. A specific JM-a-like sequence motif is discovered, and its presence or absence (in JM-b-like RTKs) in the eJM domains of several RTKs is demonstrated to dictate selective STAT activation. STAT5a activation by RTKs including the JM-a like motif is shown to involve interaction with oligosaccharides of N-glycosylated cell surface proteins such as beta 1 integrin, whereas STAT5b activation by JM-b is dependent on TYK2. ErbB4 JM-a- and JM-b-like RTKs are shown to associate with specific signaling complexes at different cell surface compartments using analyses of RTK interactomes and super-resolution imaging. These findings provide evidence for a conserved mechanism linking a ubiquitous extracellular motif in RTKs with selective intracellular STAT signaling.Peer reviewe

    Benchmark performance of low-cost Sb2Se3 photocathodes for unassisted solar overall water splitting

    Get PDF
    Determining cost-effective semiconductors exhibiting desirable properties for commercial photoelectrochemical water splitting remains a challenge. Herein, we report a Sb2Se3 semiconductor that satisfies most requirements for an ideal high-performance photoelectrode, including a small band gap and favourable cost, optoelectronic properties, processability, and photocorrosion stability. Strong anisotropy, a major issue for Sb2Se3, is resolved by suppressing growth kinetics via close space sublimation to obtain high-quality compact thin films with favourable crystallographic orientation. The Sb2Se3 photocathode exhibits a high photocurrent density of almost 30mAcm(-2) at 0V against the reversible hydrogen electrode, the highest value so far. We demonstrate unassisted solar overall water splitting by combining the optimised Sb2Se3 photocathode with a BiVO4 photoanode, achieving a solar-to-hydrogen efficiency of 1.5% with stability over 10h under simulated 1 sun conditions employing a broad range of solar fluxes. Low-cost Sb2Se3 can thus be an attractive breakthrough material for commercial solar fuel production. While photoelectrochemical water splitting offers an integrated means to convert sunlight to a renewable fuel, cost-effective light-absorbers are rare. Here, authors report Sb2Se3 photocathodes for high-performance photoelectrochemical water splitting devices

    An unbiased in vitro screen for activating epidermal growth factor receptor mutations

    Get PDF
    Cancer tissues harbor thousands of mutations, and a given oncogene may be mutated at hundreds of sites. Yet, only a few of these mutations have been functionally tested. Here, we describe an unbiased platform for the functional characterization of thousands of variants of a single receptor tyrosine kinase (RTK) gene in a single assay. Our in vitro screen for activating mutations (iSCREAM) platform enabled rapid analysis of mutations conferring gain-of-function RTK activity promoting clonal growth. The screening strategy included a somatic model of cancer evolution and utilized a library of 7,216 randomly mutated epidermal growth factor receptor (EGFR) single-nucleotide variants, that were tested in murine lymphoid Ba/F3 cells. These cells depend on exogenous interleukin-3 (IL-3) for growth, but this dependency can be compensated by ectopic EGFR overexpression, enabling selection for gain-of-function EGFR mutants. Analysis of the enriched mutants revealed EGFR A702V, a novel activating variant that structurally stabilized the EGFR kinase dimer interface and conferred sensitivity to kinase inhibition by afatinib. As proof of concept for our approach, we recapitulated clinical observations and identified the EGFR L858R as the major enriched EGFR variant. Altogether iSCREAM enabled robust enrichment of 21 variants from a total of 7,216 EGFR mutations. These findings indicate the power of this screening platform for unbiased identification of activating RTK variants that are enriched under selection pressure in a model of cancer heterogeneity and evolution

    An Unbiased Functional Genetics Screen Identifies Rare Activating ERBB4 Mutations

    Get PDF
    Despite the relatively high frequency of somatic ERBB4 mutations in various cancer types, only a few activating ERBB4 mutations have been characterized, primarily due to lack of mutational hotspots in the ERBB4 gene. Here, we utilized our previously published pipeline, an in vitro screen for activating mutations, to perform an unbiased functional screen to identify potential activating ERBB4 mutations from a randomly mutated ERBB4 expression library. Ten potentially activating ERBB4 mutations were identified and subjected to validation by functional and structural analyses. Two of the 10 ERBB4 mutants, E715K and R687K, demonstrated hyperactivity in all tested cell models and promoted cellular growth under two-dimensional and three-dimensional culture conditions. ERBB4 E715K also promoted tumor growth in in vivo Ba/F3 cell mouse allografts. Importantly, all tested ERBB4 mutants were sensitive to the pan-ERBB tyrosine kinase inhibitors afatinib, neratinib, and dacomitinib. Our data indicate that rare ERBB4 mutations are potential candidates for ERBB4-targeted therapy with pan-ERBB inhibitors.Statement of Significance:ERBB4 is a member of the ERBB family of oncogenes that is frequently mutated in different cancer types but the functional impact of its somatic mutations remains unknown. Here, we have analyzed the function of over 8,000 randomly mutated ERBB4 variants in an unbiased functional genetics screen. The data indicate the presence of rare activating ERBB4 mutations in cancer, with potential to be targeted with clinically approved pan-ERBB inhibitors.</p
    • 

    corecore