2,445 research outputs found

    Temperature-dependence of the QCD topological susceptibility

    Full text link
    We recently obtained an estimate of the axion mass based on the hypothesis that axions make up most of the dark matter in the universe. A key ingredient for this calculation was the temperature-dependence of the topological susceptibility of full QCD. Here we summarize the calculation of the susceptibility in a range of temperatures from well below the finite temperature cross-over to around 2 GeV. The two main difficulties of the calculation are the unexpectedly slow convergence of the susceptibility to its continuum limit and the poor sampling of nonzero topological sectors at high temperature. We discuss how these problems can be solved by two new techniques, the first one with reweighting using the quark zero modes and the second one with the integration method.Comment: 9 pages, 6 figures, to be published in Proceedings of the 35th International Symposium on Lattice Field Theory (Lattice2017)}: Granada, Spain}, to appear in EPJ Web Con

    The localization transition in SU(3) gauge theory

    Full text link
    We study the Anderson-like localization transition in the spectrum of the Dirac operator of quenched QCD. Above the deconfining transition we determine the temperature dependence of the mobility edge separating localized and delocalized eigenmodes in the spectrum. We show that the temperature where the mobility edge vanishes and localized modes disappear from the spectrum, coincides with the critical temperature of the deconfining transition. We also identify topological charge related close to zero modes in the Dirac spectrum and show that they account for only a small fraction of localized modes, a fraction that is rapidly falling as the temperature increases.Comment: 7 pages, 5 figures, v3: additional data on finer lattice; final, published versio

    Instanton Effects in Hadron Spectroscopy in SU(2) (Lattice) Gauge Theory

    Full text link
    We describe quenched spectroscopy in SU(2) gauge theory using smoothed gauge field configurations. We investigate the properties of quarks moving in instanton background field configurations, where the sizes and locations of the instantons are taken from simulations of the full gauge theory. By themselves, these multi-instanton configurations do not confine quarks, but they induce chiral symmetry breaking.Comment: 13 pages, LaTeX, 8 eps figure

    Stochastic perturbations in open chaotic systems: random versus noisy maps

    Get PDF
    We investigate the effects of random perturbations on fully chaotic open systems. Perturbations can be applied to each trajectory independently (white noise) or simultaneously to all trajectories (random map). We compare these two scenarios by generalizing the theory of open chaotic systems and introducing a time-dependent conditionally-map-invariant measure. For the same perturbation strength we show that the escape rate of the random map is always larger than that of the noisy map. In random maps we show that the escape rate Îș\kappa and dimensions DD of the relevant fractal sets often depend nonmonotonically on the intensity of the random perturbation. We discuss the accuracy (bias) and precision (variance) of finite-size estimators of Îș\kappa and DD, and show that the improvement of the precision of the estimations with the number of trajectories NN is extremely slow (∝1/ln⁥N\propto 1/\ln N). We also argue that the finite-size DD estimators are typically biased. General theoretical results are combined with analytical calculations and numerical simulations in area-preserving baker maps.Comment: 12 pages, 3 figures, 1 table, manuscript submitted to Physical Review

    Chopped basalt fibres: A new perspective in reinforcing poly(lactic acid) to produce injection moulded engineering composites from renewable and natural resources

    Get PDF
    This paper focuses on the reinforcing of Poly(lactic acid) with chopped basalt fibres by using silane treated and untreated basalt fibres. Composite materials with 5–10–15–20–30–40 wt% basalt fibre contents were prepared from silane sized basalt fibres using extrusion, and injection moulding, while composites with 5–10–15 wt% basalt fibre contents were also prepared by using untreated basalt fibres as control. The properties of the injection moulded composites were extensively examined by using quasi-static (tensile, three-point bending) and dynamic mechanical tests (notched and unnotched Charpy impact tests), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), heat deflection temperature (HDT) analysis, dimensional stability test, as well as melt flow index (MFI) analysis and scanning electron microscopic (SEM) observations. It was found that silane treated chopped basalt fibres are much more effective in reinforcing Poly(lactic acid) than natural fibres; although basalt fibres are not biodegradable but they are still considered as natural (can be found in nature in the form of volcanic rocks) and biologically inert. It is demonstrated in this paper that by using basalt fibre reinforcement, a renewable and natural resource based composite can be produced by injection moulding with excellent mechanical properties suitable even for engineering applications. Finally it was shown that by using adequate drying of the materials, composites with higher mechanical properties can be achieved compared to literature data
    • 

    corecore