17 research outputs found

    Quasilinear spin voltage profiles in spin thermoelectrics

    Full text link
    Recent experiments show that spin thermoelectrics is a promising approach to generate spin voltages. While spin chemical potentials are often limited to a surface layer of the order of the spin diffusion length, we show that thermoelectrically induced spin chemical potentials can extend much further in itinerant ferromagnets with paramagnetic impurities. In some cases, conservation laws, e.g., for a combination of spin and heat currents, give rise to a linear spin voltage profile. More generally, we find quasilinear profiles involving a spin thermoelectric length scale which far exceeds the spin diffusion length.Comment: 4+ page

    Anomalous Hall effect in a two dimensional electron gas with magnetic impurities

    Full text link
    Magnetic impurities play an important role in many spintronics-related materials. Motivated by this fact, we study the anomalous Hall effect in the presence of magnetic impurities, focusing on two-dimensional electron systems with Rashba spin-orbit coupling. We find a highly nonlinear dependence on the impurity polarization, including possible sign changes. At small impurity magnetizations, this is a consequence of the remarkable result that the linear term is independent of the spin-orbit coupling strength. Near saturation of the impurity spins, the anomalous Hall conductivity can be resonantly enhanced, due to interference between potential and magnetic scattering.Comment: 5 pages, 3 figure

    Microwave conductivity of d-wave superconductors with extended impurities

    Full text link
    We investigate the influence of extended scatterers on the finite temperature and finite frequency microwave conductivity of d-wave superconductors. For this purpose we generalize a previous treatment by Durst and Lee, which is based on a nodal approximation of the quasiparticle excitations and scattering processes, and apply it to the analysis of experimental spectra of YBCO-123 and BSCCO-2212. For YBCO, we find that accounting for a slight spatial extension of the strong scattering in-plane defects improves the fit of the low temperature microwave conductivity to experiment. With respect to BSCCO we conclude that it is necessary to include a large concentration of weak-to-intermediate strength extended scatterers, which we attribute to the out-of plane disorder introduced by doping. These findings for BSCCO are consistent with similar analyses of the normal state ARPES spectra and of STM spectra in the superconducting state, where an enhanced forward scattering has been inferred as well.Comment: 10 pages, 11 figure

    Dopant-modulated pair interaction in cuprate superconductors

    Full text link
    Comparison of recent experimental STM data with single-impurity and many-impurity Bogoliubov-de Gennes calculations strongly suggests that random out-of-plane dopant atoms in cuprates modulate the pair interaction locally. This type of disorder is crucial to understanding the nanoscale electronic structure inhomogeneity observed in BSCCO-2212, and can reproduce observed correlations between the positions of impurity atoms and various aspects of the local density of states such as the gap magnitude and the height of the coherence peaks. Our results imply that each dopant atom modulates the pair interaction on a length scale of order one lattice constant.Comment: 5 pages, 4 figure

    Andreev states near short-ranged pairing potential impurities

    Full text link
    We study Andreev states near atomic scale modulations in the pairing potential in both ss- and d-wave superconductors with short coherence lengths. For a moderate reduction of the local gap, the states exist only close to the gap edge. If one allows for local sign changes of the order parameter, however, resonances can occur at energies close to the Fermi level. The local density of states (LDOS) around such pairing potential defects strongly resembles the patterns observed by tunneling measurements around Zn impurities in Bi2_2Sr2_2CaCu2_2O8+x_{8+x} (BSCCO). We discuss how this phase impurity model of the Zn LDOS pattern can be distinguished from other proposals experimentally.Comment: 4 pages, 4 figure

    Boltzmann approach to the longitudinal spin Seebeck effect

    Get PDF
    We develop a Boltzmann transport theory of coupled magnon-phonon transport in ferromagnetic insulators. The explicit treatment of the magnon-phonon coupling within the Boltzmann approach allows us to calculate the low-temperature magnetic-field dependence of the spin-Seebeck voltage. Within the Boltzmann theory we find that this magnetic field dependence shows similar features as found by Flebus et al. [Phys. Rev. B 95, 144420 (2017)] for a strongly coupled magnon phonon system that forms magnon-polarons, and consistent with experimental findings in yttrium iron garnet by Kikkawa et al. [Phys. Rev. Lett. 117, 207203 (2016)]. In addition to the anomalous magnetic-field dependence of the spin Seebeck effect, we also predict a dependence on the system size

    Relaxation mechanisms of the persistent spin helix

    Full text link
    We study the lifetime of the persistent spin helix in semiconductor quantum wells with equal Rashba- and linear Dresselhaus spin-orbit interactions. In order to address the temperature dependence of the relevant spin relaxation mechanisms we derive and solve semiclassical spin diffusion equations taking into account spin-dependent impurity scattering, cubic Dresselhaus spin-orbit interactions and the effect of electron-electron interactions. For the experimentally relevant regime we find that the lifetime of the persistent spin helix is mainly determined by the interplay of cubic Dresselhaus spin-orbit interaction and electron-electron interactions. We propose that even longer lifetimes can be achieved by generating a spatially damped spin profile instead of the persistent spin helix state.Comment: 12 pages, 2 figure

    Current-induced switching in transport through anisotropic magnetic molecules

    Get PDF
    Anisotropic single-molecule magnets may be thought of as molecular switches, with possible applications to molecular spintronics. In this paper, we consider current-induced switching in single-molecule junctions containing an anisotropic magnetic molecule. We assume that the carriers interact with the magnetic molecule through the exchange interaction and focus on the regime of high currents in which the molecular spin dynamics is slow compared to the time which the electrons spend on the molecule. In this limit, the molecular spin obeys a nonequilibrium Langevin equation which takes the form of a generalized Landau-Lifshitz-Gilbert equation and which we derive microscopically by means of a nonequilibrium Born-Oppenheimer approximation. We exploit this Langevin equation to identify the relevant switching mechanisms and to derive the current-induced switching rates. As a by-product, we also derive S-matrix expressions for the various torques entering into the Landau-Lifshitz-Gilbert equation which generalize previous expressions in the literature to nonequilibrium situations.1\. Auflag

    Thermodynamic transitions in inhomogeneous d-wave superconductors

    Full text link
    We study the spectral and thermodynamic properties of inhomogeneous d-wave superconductors within a model where the inhomogeneity originates from atomic scale pair disorder. This assumption has been shown to be consistent with the small charge and large gap modulations observed by scanning tunnelling spectroscopy (STS) on BSCCO. Here we calculate the specific heat within the same model, and show that it gives a semi-quantitative description of the transition width in this material. This model therefore provides a consistent picture of both surface sensitive spectroscopy and bulk thermodynamic properties.Comment: 4 pages, 4 figure
    corecore