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Boltzmann approach to the longitudinal spin Seebeck effect
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We develop a Boltzmann transport theory of coupled magnon-phonon transport in ferromagnetic insulators.
The explicit treatment of the magnon-phonon coupling within the Boltzmann approach allows us to calculate
the low-temperature magnetic-field dependence of the spin-Seebeck voltage. Within the Boltzmann theory we
find that this magnetic field dependence shows similar features as found by Flebus et al. [Phys. Rev. B 95,
144420 (2017)] for a strongly coupled magnon phonon system that forms magnon-polarons, and consistent with
experimental findings in yttrium iron garnet by Kikkawa et al. [Phys. Rev. Lett. 117, 207203 (2016)]. In addition
to the anomalous magnetic-field dependence of the spin Seebeck effect, we also predict a dependence on the
system size.
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I. INTRODUCTION

The spin Seebeck effect (SSE) describes the generation
of a spin current in a magnetic material in response to a
temperature gradient applied across the sample [1–4]. The
spin current can be transferred to a paramagnetic metal
(NM) layer attached to the magnet and is then typically
detected via the inverse spin Hall effect (ISHE) [5–8].
Although the spin Seebeck effect was first observed in metals
[1], it has also been reported for magnetic semiconductors
[2] and magnetic insulators [3]. While the SSE remains
controversial in the transverse configuration, in which spin
current and temperature gradient are perpendicular, due to
possible effects from out-of-plane temperature gradients,
the longitudinal SSE, in which the temperature gradient and
the spin current are collinear, has been reproduced by many
groups [9–17]. Recently, the spin Seebeck effect has also
been observed in antiferromagnets [18,19].

Whereas a spin current in a metallic ferromagnet can be
carried by both conduction electrons and spin waves, in a
ferromagnetic insulator (FMI) the spin current of the SSE
is carried exclusively by spin waves or, using a quantum-
mechanical language, “magnons.” At the same time, in an
FMI the applied temperature gradient primarily affects the
lattice vibrations, i.e., the phonons. The initial theoretical
works by Xiao et al. [20] and Hoffman et al. [21], which
treat the spin dynamics in the FMI in a Landau-Lifshitz-
Gilbert approach, describe the effect of phonons on the mag-
netization dynamics by means of an effective temperature-
dependent noise term. A second class of theoretical cal-
culations by Rezende and co-workers [22–24] is based on
a Boltzmann approach. Whereas this approach tackles the
role of magnon-magnon interaction to the SSE inside the
FMI in great detail, it attributes the (phonon-related) thermal
relaxation processes of the magnons in terms of a phenomeno-
logical thermal lifetime τmp. In both theories, the magnon-
phonon interaction plays a key role in the determination of
the magnon mean free path and, thus, of the system-size and
the magnetic field dependence of the magnon-driven SSE.
A purely phenomenological treatment of the phonon-magnon

interaction, however, is not sufficient for a microscopic under-
standing of these parameter dependencies of the SSE.

The importance of a microscopic understanding of the
magnonic properties inside ferromagnetic insulators was also
illustrated in a first series of magnetic-field dependence and
length-scale probing measurements at ambient temperature
[25–31]. Again, as the attached heat baths couple to the
phonons inside the FMI only, the magnonic transport prop-
erties are exclusively driven by magnon-phonon coupling,
so that it is crucial to study the magnon-phonon interaction
processes inside the ferromagnet to understand the micro-
scopic origin of the SSE transport properties. Evidence of
a “phonon drag” in the SSE was pointed out earlier in
temperature-dependent measurements of the SSE, when the
shape of the magnon conductivity showed the same temper-
ature dependence as the corresponding phonon conductivity
[10,32]. Recently, very direct evidence of the importance of
the phonon-magnon interaction for the SSE was found in
low-temperature measurements [33] of the SSE in YIG, which
showed sharp peaks in the spin Seebeck signal at the two
specific magnetic fields where the magnon and phonon disper-
sions have touching points. This phenomenon was explained
by the existence of “magnon-polarons” that describe mixed
states which are neither purely magnonic nor phononic [34].

In this work, we present a Boltzmann transport theory to
describe the coupled magnon-phonon scattering mechanism
in a simple model ferromagnetic insulator. In contrast to
Ref. [34], we employ separate, incoherent magnon and
phonon distributions, which, in the diffusive regime, may
be described using an isotropic moment—corresponding to
a local phonon or magnon temperature—and an anisotropic
moment—corresponding to a phonon or magnon (momen-
tum) current density. We assume that the relaxation due to
magnon-number nonconserving scattering processes, such
as magnon dipole-dipole interaction, is faster than magnon-
phonon scattering processes, so that no magnon chemical
potential needs to be introduced [30]. Despite the absence
of coherence between magnon and phonon excitations, our
findings qualitatively explain the experimental observation
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FIG. 1. Illustration of the model setup for the longitudinal spin
Seebeck effect. A ferromagnetic insulator of thickness LF (bottom,
blue) is coupled to a normal metal of thickness LN (top, green). The
coordinate axes are chosen such that the x axis is perpendicular to the
ferromagnet–normal metal interface plane. A temperature difference
�T applied across the entire system results in the flow of a spin
current js across the ferromagnet–normal metal interface, which can
be measured by means of the inverse spin Hall effect.

of peaks in the longitudinal spin Seebeck effect at low
temperatures [33].

The remainder of this paper is organized as follows. In
Sec. II, we present the Boltzmann equations for the magnons
and phonons. We find microscopic expressions for the corre-
sponding lifetimes from quantum-mechanically derived colli-
sion integrals. Upon imposing a hierarchy of “fast” and “slow”
relaxation processes, the theory is reformulated in terms of a
set of coupled hydrodynamic equations for the magnon and
phonon distribution functions. The conversion of magnonic
to electronic spin current at the ferromagnet–normal-metal
interface is described using the spin-mixing conductance of
the interface [35]. In Sec. III, we apply our theory to the
ferrimagnetic insulator Y3Fe5O12 (YIG), choosing model pa-
rameters such that the properties of a YIG|Pt heterostructure
at low temperatures are well approximated [36,37]. We also
present quantitative results for the relaxation rates, and trans-
port coefficients of the magnon and phonon currents based
on analytical evaluations, and compare our findings to the
coherent magnon-polaron theory [34]. In Sec. IV, we present
our conclusions.

II. MODEL

We consider a system consisting of a ferromagnetic insu-
lator of thickness LF attached to a normal metal of thickness

LN as illustrated in Fig. 1. We choose coordinates such that
the x axis is perpendicular to the ferromagnet–normal metal
interface, the ferromagnet and the normal metal occupying
the space −LF < x < 0 and 0 < x < LN, respectively. The
system is coupled to heat baths on the bottom and top,
which are held at temperatures T ± �T/2, see Fig. 1. The
magnetization direction and the applied magnetic field B are
in the z direction. We restrict ourselves to a low temperature
regime, where umklapp scattering of magnons and phonons
can be neglected, and optical magnons and phonons are frozen
out. In YIG, this corresponds to temperatures of a few degrees
Kelvin [37,38].

The magnon and phonon distributions in the ferromag-
netic insulator are described using their distribution functions
bk(r, t ) and nqλ(r, t ), where k and q are the magnon and
phonon wave vectors, respectively, and λ denotes the phonon
polarization. The distribution functions bk(r, t ) and nqλ(r, t )
satisfy coupled Boltzmann equations, which are the starting
point of our analysis.

A. Magnon Boltzmann equation

The Boltzmann equation for the magnon distribution
bk(r, t ) has the general form

∂bk(r, t )

∂t
+ vk · ∂bk(r, t )

∂r
= dbk(r, t )

dt

∣∣∣∣
coll.

, (1)

where vk = ∂εk/∂ (h̄k) is the group velocity of magnons with
wave vector k. The collision term is separated into contribu-
tions from impurity/boundary scattering (i), magnon-magnon
scattering (m), and magnon-phonon scattering (p),

dbk

dt

∣∣∣∣
coll.

= dbk

dt

∣∣∣∣
i

+ dbk

dt

∣∣∣∣
m

+ dbk

dt

∣∣∣∣
p

. (2)

For the impurity or boundary scattering contribution, we use
the relaxation-time form:

dbk(r, t )

dt

∣∣∣∣
i

= −bk(r, t ) − b0
k(r, t )

τ im
k

. (3)

Here, b0
k(r, t ) is the equilibrium magnon distribution at tem-

perature T (r, t ) and τ im
k is the relaxation time.

The magnon-magnon collision integral contains three-
magnon processes, which originate from dipole-dipole in-
teraction as well as four-magnon processes that represent
exchange scattering (see Table I),

dbk

dt

∣∣∣∣
m

= 2π

h̄

∑
k2,k′

1,k
′
2

|V ex(k′
1, k′

2; k, k2)|2δ(εk + εk2 − εk′
1
− εk′

2
)δk+k2−k′

1−k′
2

× [
(1 + bk )

(
1 + bk2

)
bk′

1
bk′

2
− bkbk2

(
1 + bk′

1

)(
1 + bk′

2

)]
+ 2π

h̄

∑
k2,k′

|V dip(k, k2; k′)|2δ(εk + εk2 − εk′ )δk′−k−k2

[
(1 + bk )

(
1 + bk2

)
bk′ − bkbk2 (1 + bk′ )

]

+ π

h̄

∑
k′

2,k
′
1

|V dip(k′
2, k′

1; k)|2δ(εk − εk′
2
− εk′

1
)δk−k′

2−k′
1

[
(1 + bk )bk′

2
bk′

1
− bk

(
1 + bk′

2

)(
1 + bk′

1

)]
. (4)
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TABLE I. Schematic overview of the relevant magnon-magnon and magnon-phonon scattering processes.

process in out

four-magnon (magnon interaction)

three-magnon

phonon-to-magnon

phonon-to-two-magnon

magnon-phonon

The first term on the right-hand side of this expression rep-
resents the four-magnon processes, which are predominantly
mediated by exchange processes. The corresponding sym-
metrized squared matrix element is [37,39]

|V ex(k′
1, k′

2; k, k2)|2 = 2

(
gμBD

MV

)2

(k · k2)2, (5)

where D is the magnon exchange stiffness, μB the Bohr mag-
neton, g = 2 the Landé g factor, M the saturation magnetiza-
tion, and V the volume of the FMI. The second and third terms

on the right-hand side of Eq. (4) account for magnon conflu-
ence processes and magnon splitting processes [37,40]. The
factor 1/2 in the collision integral of the splitting processes
was inserted to avoid double counting. These processes arise
from dipole-dipole interactions or from relativistic effects and
after symmetrization one has [37]

|V dip(k, k′; k + k′)|2

=
(

μ0

4π

)2
π2(gμB)3M

8V

∣∣∣∣kzk+
k2

+ k′
zk

′
+

k′2

∣∣∣∣
2

, (6)

where μ0 is the vacuum permeability and k+ = kx + iky .

The third contribution to the magnon collision integral is from magnon-phonon collisions. The collision integral can be
derived from the magneto-elastic Hamiltonian of Kaganov et al. [40,41] and reads

dbk

dt

∣∣∣∣
p

= 2π

h̄

∑
k′,q,λ

|U (k, q, λ; k′)|2δ(εk + ωqλ − εk′ )δk+q−k′ [(1 + bk )(1 + nqλ)bk′ − bknqλ(1 + bk′ )]

+ 2π

h̄

∑
k′,q′,λ′

|U (k′, q′, λ′; k)|2δ(εk − ωq′λ′ − εk′ )δk−q′−k′ [(1 + bk )nq′λ′bk′ − bk(1 + nq′λ′ )(1 + bk′ )]

+ 2π

h̄

∑
k2,q′,λ′

|W (2)(q′, λ′)|2δ(εk − ωq′λ′ + εk2 )δk+k2−q′[(1 + bk )(1 + bk2 )nq′λ′ − bkbk2 (1 + nq′λ′ )]

+ 2π

h̄

∑
q′,λ′

|W (1)(q′, λ′)|2δ(εk − ωq′λ′ )δk−q′[(1 + bk )nq′λ′ − bk(1 + nq′λ′ )]. (7)

The squares |U |2 and |W |2 are expressed in terms of the magnon exchange stiffness D and two magneto-elastic constants B‖
and B⊥ that represent dipole-dipole as well as spin-orbit interaction [40,42]. The first two terms on the right-hand side of this
expression represent “normal” collision processes, in which the magnon number is conserved. The corresponding squared matrix
element reads [43]

|U (k, q, λ; k′)|2 = h̄2

2	V ωqλ

[
D

2
((k · q)k′ + (k′ · q)k) · êλ + B‖

S
(q − 3qzêz) · êλ

]2

, (8)
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where êλ is the unit vector indicating the polarization direction of the phonon mode (q, λ) and S = MVa/gμB is the macrospin
of a unit cell of volume Va . The first term in this expression can also be derived from a Heisenberg model, by expanding the
exchange couplings to lowest order in small displacements of the atomic positions, see Refs. [42,44]. The third term describes
the pairwise creation or annihilation of magnons,

|W (2)(q, λ)|2 = h̄2

2	V ωqλ

[(
B‖
2S

(qxêx − qyêy ) · êλ

)2

+
(

B⊥
2S

(qyêx + qxêy ) · êλ

)2
]
. (9)

Finally, the fourth term on the right-hand side of Eq. (7) describes the conversion of a magnon into a single phonon and vice
versa, with [41,43]

|W (1)(q, λ)|2 = h̄2

2	Vaωqλ

B2
⊥

2S
[((qzêx + qxêz) · êλ)2 + ((qzêy + qyêz) · êλ)2]. (10)

In principle, the latter process gives rise to the existence of “magnon polarons” [45,46], a coherent superposition of a magnon and
phonon excitation. Sufficiently strong phonon-phonon and magnon-magnon scattering processes destroy the magnon-phonon
coherence, however, validating our incoherent description in terms of the distribution function only. (Note that Refs. [33,34]
uses a fully coherent description, finding results that do not differ qualitatively from ours.) The three types of magnon-phonon
scattering processes are illustrated schematically in Table I.

B. Phonon Boltzmann equation

The Boltzmann equation for the phonon distribution function nqλ(r, t ) reads

∂nqλ(r, t )

∂t
+ cqλ · ∂nqλ(r, t )

∂r
= dnqλ(r, t )

dt

∣∣∣∣
coll.

, (11)

where cqλ = ∂ωqλ/∂ (h̄q) is the group velocity of phonons with wave vector q and polarization λ. The collision term is separated
into contributions from impurity/boundary scattering (i), phonon-phonon scattering (p), and phonon-magnon scattering (m). As
in the case of the magnons, we will describe phonon-impurity scattering using the relaxation-time approximation,

dnqλ(r, t )

dt

∣∣∣∣
i

= −nqλ(r, t ) − n0
qλ(r, t )

τ
ip
qλ

, (12)

where τ
ip
qλ is the corresponding phonon-impurity scattering time. The expression for the phonon-magnon collision term reads

dnqλ

dt

∣∣∣∣
m

= 2π

h̄

∑
k,k′

|U (k, q, λ; k′)|2δ(ωqλ + εk − εk′ )δq+k−k′[(1 + bk )(1 + nqλ)bk′ − bknqλ(1 + bk′ )]

+ π

h̄

∑
k′

1,k
′
2

|W (2)(q, λ)|2δ(ωqλ − εk′
1
− εk′

2
)δq−k′

1−k′
2
[bk′

1
bk′

2
(1 + nqλ) − (1 + bk′

1
)(1 + bk′

2
)nqλ]

+ 2π

h̄

∑
k′

|W (1)(q, λ)|2δ(ωqλ − εk′ )δq−k′[bk′ (1 + nqλ) − (1 + bk′ )nqλ]. (13)

We will not give an explicit expression for the phonon-phonon collision integral, since the corresponding collision rates do not
enter in our final expressions (see the discussion below).

C. Ansatz for the distribution function

To simplify the analysis of the coupled Boltzmann equa-
tions for the magnon and phonon distribution functions, we
consider small deviations from equilibrium only and lin-
earize the distribution functions bk(r, t ) and nqλ(r, t ) around
the equilibrium distributions b0

k = 1/(eεk/kBT − 1) and n0
qλ =

1/(eωqλ/kBT − 1),

bk(r, t ) = b0
k +

(
−∂b0

k

∂εk

)
ε′

k(r, t ), (14)

nqλ(r, t ) = n0
qλ +

(
− ∂n0

qλ

∂ωqλ

)
ω′

qλ(r, t ). (15)

We further assume that the magnon-magnon and phonon-
phonon interactions are strong enough, when compared to
the magnon-phonon interactions, that the magnon and phonon
distributions everywhere are in a local equilibrium, character-
ized by energy and momentum densities ρ

m,p
E and ρ

m,p
k . This

corresponds to the parametrization [47]

ε′
k(r, t ) = εk

T
�T m + k · vm,

ω′
qλ(r, t ) = ωqλ

T
�T p + q · vp, (16)

where �T m,p is the difference local magnon/phonon temper-
ature and the (global) equilibrium temperature T and vm,p

parameterizes the magnon/phonon momentum density. The
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temperature differences �T m,p and the velocities vm,p are
related to the corresponding energy and momentum densities
as

�ρ
m,p
E = Cm,p�T m,p,

ρ
m,p
kα

=
∑

β

Cm,p
αβ v

m,p
β , (17)

which defines the specific heat capacities

Cm = 1

V

∑
k

∂b0
k

∂T
εk,

Cp = 1

V

∑
q,λ

∂n0
qλ

∂T
ωqλ, (18)

and the tensor coefficients

Cm
αβ = 1

V

∑
k

(
−∂b0

k

∂εk

)
kαkβ,

Cp
αβ = 1

V

∑
q,λ

(
− ∂n0

qλ

∂ωqλ

)
qαqβ. (19)

One verifies that the magnon-magnon and phonon-phonon
collision integrals are zero for a distribution function of this
form, since magnon-magnon and phonon-phonon collisions
conserve energy and momentum. (Recall that we neglect
umklapp processes.)

The velocities vm,p are related to the magnon spin current
density js and heat current densities jm,p

Q ,

js = h̄

V

∑
k

vkbk, (20)

jm
Q = 1

V

∑
k

εkvkbk, (21)

jp
Q = 1

V

∑
q,λ

ωqλcqλnqλ. (22)

Upon substitution of the ansatz (14), one finds

j s
α =

∑
β

Jαβvm
β , j

m,p
Qα =

∑
β

Im,p
αβ v

m,p
β (23)

with

Jαβ = h̄

V

∑
k

(
−∂b0

k

∂εk

)
vkβkα,

Im
αβ = 1

V

∑
k

(
−∂b0

k

∂εk

)
εkvkβkα, (24)

Ip
αβ = 1

V

∑
q,λ

(
− ∂n0

qλ

∂ωqλ

)
ωqλcqλβqα.

Impurity scattering and magnon-phonon scattering cause a
further relaxation of the distribution functions. Impurity scat-
tering tends to suppress any finite values of vm and vp but
leaves �T m and �T p unaffected; magnon-phonon scattering
suppresses differences �T m − �T p and vm − vp. To derive
the continuity equations for �T m,p and vm,p, we substitute the
ansatz (16) into the Boltzmann equations for the magnon and
phonon distribution functions and calculate the rate of change
of the energy and momentum densities. This gives

Cm ∂�T m

∂t
+

∑
α,β

Im
αβ

∂vm
α

∂xβ

= −G(�T m − �T p), (25)

Cp ∂�T p

∂t
+

∑
α,β

Ip
αβ

∂v
p
α

∂xβ

= −G(�T p − �T m ), (26)

∑
α

(Im
βα

T

∂�T m

∂xα

+ Cm
αβ

∂vm
α

∂t

)

= −
∑

α

[
G im

αβvm
α + Gαβ

(
vm

α − vp
α

)]
, (27)

∑
α

(
Ip

βα

T

∂�T p

∂xα

+ Cp
αβ

∂v
p
α

∂t

)

= −
∑

α

[
G ip

αβvp
α + Gαβ

(
vp

α − vm
α

)]
, (28)

where the tensor coefficients Im,p
αβ = ∂j

m,p
Qα /∂v

m,p
α =

∂j
m,p
kαβ /∂�T m,p, with jm,p

Q and jk the energy and momentum
current densities, respectively. The right-hand side of
Eqs. (25)–(28) describes energy and momentum exchange
between magnons and phonons and momentum exchange
between magnons or phonons and impurities. The rates for
these processes are

G im
αβ = 1

V

∑
k

(
−∂b0

k

∂εk

)
kαkβ

τ im
k

, G ip
αβ = 1

V

∑
q,λ

(
− ∂n0

qλ

∂ωqλ

)
qαqβ

τ
ip
qλ

,

G = 1

V

∑
q,λ

ω2
qλ

kBT 2
γqλ, Gαβ = 1

V

∑
q,λ

qαqβ

kBT
γqλ, (29)

where we abbreviated

γqλ = 2π

h̄

∑
k

n0
qλ

[
|U (k, q, λ; k + q)|2b0

k

(
1 + b0

k+q

)
δ(ωqλ + εk − εk+q)

+ 1

2
|W (2)(q, λ)|2(1 + b0

q−k

)(
1 + b0

k

)
δ(ωqλ − εk − εq−k ) + |W (1)(q, λ)|2(1 + b0

k

)
δq−kδ(ωqλ − εk )

]
. (30)
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Equations (25)–(28) fully describe the coupled energy and
momentum transport of the magnon and phonon systems. In
the steady state, Eqs. (27) and (28) describe “phonon drag”
and “magnon drag,” the appearance of an anisotropic com-
ponent of the magnon and phonon distributions in response
to a gradient of the temperatures. The isotropic moment in
Eqs. (25) and (26) describes the relaxation of the magnon
temperature towards the phonon temperature.

D. Boundary conditions and spin Seebeck voltage

At the ferromagnetic insulator—insulator boundary at
x = −LF the magnon spin current (20) is zero, which
implies vm(−LF) = 0, whereas the phonon temperature
�T p(−LF) = �T/2 is determined by the temperature of
the bottom heat bath, see Fig. 1. Similarly, at the normal-
metal interface x = 0 the phonon temperature T p satisfies
the boundary condition �T p(0) = −�T/2. The boundary
condition for the magnon current at the normal-metal interface
x = 0 takes the form

j s
x (0) = S ′

m(�T m(0) − �T e(0)), (31)

where �T e(0) = −�T/2 is the (deviation of the) electron
temperature at the interface at x = 0 and S ′

m is the interface
spin Seebeck coefficient [48], which can be expressed in terms
of the real part gr of the spin mixing conductance [20],

S ′
m = gr

πAS

1

N

∑
k

εk
db0

k

dT
, (32)

where S is the spin of the unit cell. A derivation of the
boundary condition (31) and a microscopic model leading
to the expression for (32) for the interface spin Seebeck
coefficient S ′

m are given in Appendix B.
The relation between the spin current j s

x (0) at the
ferromagnet–normal metal interface and the transverse spin
Seebeck voltage follows the theory of the inverse spin Hall
effect. A nonzero spin current density implies a finite gradient
of the spin accumulation μs = μ↑ − μ↓ [49],

js = −σs∂rμs, (33)

where σs is the spin conductivity. The spin accumulation
satisfies the equation [49]

λ2
sf∂

2
r μs = μs, (34)

where λsf is the spin-flip length. Together with the boundary
condition j s

x (LN) = 0 at the interface between the normal
metal and the top heat bath, this gives the solution

j s
x (x) = j s

x (0)
sinh ((LN − x)/λsf )

sinh(LN/λsf )
. (35)

The spin Seebeck voltage equals [20]

VSSE(x) = 2e

h̄
θSHLWρj s

x (x), (36)

where LW is the sample width, ρ the electric resistivity, and
θSH is the spin Hall angle of the normal metal. Averaging over

x gives

VSSE = 1

LN

∫ LN

0
dxVSSE(x)

= θSHρ
2e

h̄

LW

LN
λsfj

s
x (0) tanh

(
LN

2λsf

)
. (37)

III. RESULTS

We use our theory to describe the longitudinal spin See-
beck effect in YIG|Pt heterostructures, where we put our
focus on the magnetic field dependence measurements at
low temperatures as performed by Kikkawa et al. [27,33].
Since the longitudinal spin Seebeck effect is a steady-state
phenomenon, driven by a time-independent temperature dif-
ference �T applied across the ferromagnet–normal-metal
bilayer, we may neglect the time derivatives in the conti-
nuity equations (25)–(28) and restrict our attention to time-
independent solutions. Also, for the one-dimensional geome-
try of Fig. 1, all spatial dependencies will be as a function of
the coordinate x only.

At low temperatures, we may take a parabolic band for the
magnon dispersion,

εk = D|k|2 + gμB(B + μ0M ), (38)

with an offset due to the intrinsic exchange splitting and the
Zeeman shift. Here, B denotes the applied magnetic field
and μ0M is the exchange gap. For the phonons, we restrict
ourselves to the acoustic branches,

ωqλ = h̄cλ|q|, (39)

where cλ is the sound velocity and q the phonon wave vector.
For a YIG crystal oriented along the 〈100〉 axis there are
one longitudinal as well as two transverse polarized acoustic
phonon branches. The values of the corresponding material
properties which are used for our numerical calculation are
summarized in Table II. For this simple model description,
the system is isotropic, so that the tensors Im,p, G im,ip, and G
are proportional to the diagonal tensor.

Substituting the explicit expressions we find, for tempera-
tures low enough that the dispersions (38) and (39) are valid
for all thermally excited magnons and phonons that

Im = 5

16h̄

(kBT )5/2

(πD)3/2
e−ε0/(kBT ), (40)

with ε0 = gμB(B + μ0M ), and

Ip =
∑

λ

2π2(kBT )4

45c3
λh̄

4 . (41)

In the steady-state limit, the velocities vm and vp can be
obtained from Eqs. (27) and (28),

vm = − 1

T

(G ip + G)Im∂r�T m + GIp∂r�T p

G imG ip + GG im + GG ip
, (42)

vp = − 1

T

(G im + G)Ip∂r�T p + GIm∂r�T m

G imG ip + GG im + GG ip
. (43)

They imply a relation between the magnon spin current js,
and between the magnon and phonon heat currents jm,p

Q and
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TABLE II. Parameter values used for the numerical calculations.
The third column lists the relevant references where these values
were obtained.

Quantity Value Reference

a (YIG) 1.24 nm [37]

D 8.5 × 10−40 J m2 [50]

μ0M 0.18 T [51]

c‖ 7209 m/s [43]

c⊥ 3843 m/s [43]

	 21450 kg/m3 [36]

B‖ 4.12 × 10−3 eV [43]

B⊥ 8.24 × 10−3 eV [43]

a (Pt) 0.39 nm [52]

gr/A 1016 1/m2 [51]

θSH 0.0037 [8]

λsf 7.3 nm [53]

ρ 0.91 × 10−6 �/m [54]

LN × LW 5 nm × 2 mm

the gradients of the magnon and phonon temperatures,

js = − Sm∂r�T m − Sd∂r�T p, (44)

jm,p
Q = − κm,p∂r�T m,p − κd∂r�T p,m, (45)

with the (bulk) spin Seebeck coefficients

Sm = 1

T

J (G ip + G)Im

G imG ip + GG im + GG ip
,

Sd = 1

T

JGIp

G imG ip + GG im + GG ip
, (46)

and thermal conductivities

κm = 1

T

(G ip + G)(Im )2

G imG ip + GG im + GG ip
,

κp = 1

T

(G im + G)(Ip)2

G imG ip + GG im + GG ip
, (47)

κd = 1

T

GIpIm

G imG ip + GG im + GG ip
.

The coefficients Sd and κd describe the “phonon drag,” the
anisotropic component of the magnon distribution in response
to a gradient of the phonon temperature.

To obtain a numerical estimate of the relevant relaxation
rates, we use the values given in Table II. For impurity
scattering we assume that the phonon-impurity and magnon-
impurity scattering times τ

ip
qλ = τip and τ im

k = τim are indepen-
dent of q and λ and k, respectively, and extract these times
from the low-temperature thermal conductivity and its mag-
netic field dependence as in Boona et al. [25]. This gives the
values τim = 3.4 × 10−8 s and τip = 5.6 × 10−8 s. Figure 2
shows the temperature and magnetic-field dependencies of the
three contributions to the magnon-phonon relaxation rates G
and of the impurity rates G im and G ip.

FIG. 2. (a) Three contributions to the magnon-phonon relaxation
rate G, the magnon-impurity rate G im, and the phonon-impurity rate
G im, as a function of the applied magnetic field B. The three contribu-
tions to the magnon-phonon rate are from magnon-phonon-scattering
(solid), phonon-to-magnon conversion (dashed), and phonon-to-two-
magnon conversion (dotted). The magnon and phonon energy dis-
persions for the “critical” applied magnetic fields B⊥ = 2.4 T and
B‖ = 9 T are shown in (b) and (c), respectively.

The phonon-to-magnon conversion and phonon-to-two-
magnons conversion cease to contribute to the relaxation rate
G above a “critical” magnetic field, because of energy and
momentum conservation considerations. Since the phonon
and magnon dispersions are tangential at the critical magnetic
field, see Figs. 2(b) and 2(c), the magnon-to-phonon conver-
sion rates diverges upon approaching the critical field from
below.1 There are two such divergences, because longitudinal
and transversal phonons have different velocities and, hence,
different critical fields. In our approach the divergences should
be broadened by the (maximum of the) phonon-phonon and
magnon-magnon scattering rates. These rates do not appear
explicitly in the continuity equations (25)–(28). Instead, they
are only considered implicitly in our theory, because they
enforce the local equilibrium form (16) of the magnon and
phonon distribution functions. For that reason, the broadening
of the divergences in Figs. 2 and 3 has to take place a
posteriori. We have broadened the divergence of the results
shown in Figs. 2 and 3 by an average magnon-magnon life-
time τm = 10−10 s [22] due to magnon number conserving
scattering which corresponds to an energy broadening ε =
h̄/2τm = 10−6 eV. For comparison, in the coherent theory
of Refs. [33,34] the magnon-magnon and phonon-phonon
relaxation rates are assumed to be much smaller than the
coherent magnon-phonon coupling and the broadening of
the sharp magnetic-field dependent features is determined
by the magnon-phonon coupling energy. The (relativistic)
phonon-to-two-magnons conversion shows a monotonous de-
cay upon increasing the magnetic field.

1The divergence is partially suppressed once deviations from the
fully isotropic dispersions (38) and (39) are taken into account.
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FIG. 3. Spin Seebeck voltage as a function of the applied mag-
netic field for different temperatures. (a) Three magnon/phonon
impurity rates τim,p at fixed length LF = 100 μm. (b) Three different
lengths for fixed τim,p as in Table II.

The isotropic moment in Eqs. (25) and (26) describes the
relaxation of the magnon temperature towards the phonon
temperature. Of special interest for the calculation of the spin
Seebeck current is the so-called thermal decay length λ, which
describes the length scale over which a difference between
magnon and phonon temperatures at the interface relaxes
towards the center of the ferromagnet. Upon substituting the
velocities (42) and (43) into the continuity equations (25) and
(26) we obtain two second-order differential equation for the
magnon and phonon temperatures,

κm∂2
x�T m + κd∂

2
x�T p

= −κp∂
2
x�T p − κd∂

2
x�T m = G(�T m − �T p). (48)

The general solution of these equations is of the form

�T m(x) = �T0 + αx + (κp + κd )
∑
±

δ±e±x/λ,

�T p(x) = �T0 + αx − (κm + κd )
∑
±

δ±e±x/λ, (49)

with the decay length

λ2 = κmκp − κ2
d

G(κp + κm + 2κd )
(50)

and with coefficients �T0, α, and δ± that are determined by
the boundary conditions.

Taking the parameter values for YIG, see Table II, we find
that find that κp 	 κm,d. In the limit κp 	 κm,d, Eq. (49) gives
a strictly linear spatial profile for the phonon temperature, so
that �T0 = 0 and α = −�T/LF. The remaining parameters
δ± can then be obtained from the boundary conditions for the
magnon spin current at x = −LF and x = 0. The result for the
(magnon) spin current j s

x (0) at the ferromagnet–normal metal
interface is

j s
x (0) = �T

L

(Sm + Sd ) tanh(L/2λ)

Sm/(λS ′
m ) + coth(L/λ)

. (51)

Substitution of Eq. (51) into the expression (37) gives the
corresponding spin Seebeck voltage. An analytic solution of
the equations is possible without the simplifications asso-
ciated with the limit κp 	 κm,d, too, although the resulting
expression for j s

x (0) is not as concise as Eq. (51).
Figure 3 shows the resulting spin Seebeck voltage VSSE for

two different temperatures, as a function of the applied mag-
netic field. Although VSSE generally decreases upon increas-
ing the magnetic field, sharp features exist near the “critical”
magnetic fields at which the magnon-to-phonon conversion
rate diverges. The magnitude of those features depends on
the impurity lifetimes τim,p, and the length of the FMI. These
results are similar to those obtained by Kikkawa et al. and
Flebus et al. [33,34], where the magnon-to-phonon conversion
processes were treated coherently. The incoherent approach
taken here should be valid if the incoherent processes dom-
inate over the coherent ones, i.e., if the magnon-to-phonon
conversion matrix elements are small in comparison to the
phonon-phonon and/or magnon-magnon scattering lifetimes.
At a fixed applied magnetic field, the dependence of the
longitudinal spin Seebeck effect on the thickness LF of the
ferromagnetic layer is governed by the combination λS ′

m/Sm,
which controls the experimentally observed saturation of the
LSSE signal towards bulk ferromagnetic samples [26].

IV. CONCLUSIONS

In summary, we constructed a Boltzmann description for
the coupled magnon-phonon transport in a simple model fer-
romagnetic insulator. In our description, the magnon-phonon
coupling is accounted for explicitly through its appearance in
the collision integrals. Phonon-phonon and magnon-magnon
relaxation processes, on the other hand, are taken into ac-
count implicitly, as they impose a local-equilibrium form of
the magnon and phonon distribution functions. The magnon-
phonon coupling leads to a “phonon drag” contribution to the
magnon spin current in the ferromagnetic insulator.

At low temperatures, of the three types of magnon-phonon
coupling terms that we consider—phonon-to-magnon con-
version, phonon-to-two-magnon conversion, and magnon-
phonon interaction—the first process causes sharp peaks or
dips in the magnon-phonon scattering rate at a critical mag-
netic field strength, where the magnon and phonon disper-
sions have touching points. In general. there are two such
critical magnetic field strengths, corresponding to longitu-
dinal and transverse phonon branches. Whether a peak or
dip is observed depends on the relative magnitudes of the
other scattering rates involved, such as magnon-impurity and
phonon-impurity rates, and the size of the ferromagnetic
sample. These findings agree qualitatively with the experi-
mental observations of Kikkawa et al. [33]. In particular, our
incoherent Boltzmann approach yields similar features for the
resulting spin Seebeck voltage as the theory of Refs. [33,34],
which used a fully coherent coupling of magnon and phonon
systems, leading to the formation of “magnon-polarons.”

In particular in the limit of thick ferromagnetic layers, the
strength of the spin Seebeck effect may depend strongly on
the properties of the ferromagnet–normal-metal interface. We
expanded the spin-pumping interface model of Xiao et al.,
which uses the spin-mixing conductance to characterize the
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interface properties, beyond the classical high temperature
limit, to describe the low-temperature regime. In addition we
showed the consistency of the spin mixing conductance model
to the alternatively used description of the interface coupling
in terms of an sd-like exchange coupling between magnons
in the ferromagnet and spin-polarized electrons in the normal
metal as in Ref. [55].

Our quantitative calculations rely on a few simplifying
approximations, such as the absence of umklapp processes,
the local-equilibrium assumption, and the use of low-energy
approximations for the magnon and phonon dispersions, see
Eqs. (38) and (39). Going beyond the simplifying assump-
tions made in our calculation is necessary for a quantitative
description of the magnetic-field dependence of the spin See-
beck effect near room temperature, where umklapp processes
become important and the low-energy approximations of the
magnon and phonon dispersions are no longer sufficient. Such
an improved theoretical description could be formulated along
the lines of Ref. [56], which used a description featuring
different temperatures for different magnon modes. Whereas
some of our approximations are expected to break down at
higher temperatures, we expect that the existence of the sharp
magnetic-field dependent features in the spin-Seebeck voltage
does not depend on these approximations and that these
features will (in principle) continue to exist—albeit that their
broading will quickly increase with increasing temperature,
consistent with the observation of Ref. [33].

Possible further extensions of our theory include a more
microscopic treatment of the magnon-magnon interactions or
the inclusion of time-dependent effects. In particular, we can
use our approach to investigate the temporal evolution of spa-
tially inhomogeneous magnon and phonon temperatures and
investigate the relevant time scales, that govern the evolution
of the spin Seebeck effect on short time scales [57]. We leave
such extensions for future work.

ACKNOWLEDGMENTS

This paper was financially supported by the DFG via SPP
1538 “Spin Caloric Transport” and the DFG via CRC/TRR
227 “Ultrafast Spin Dynamics.” We would like to thank G. E.
W. Bauer for stimulating discussions.

APPENDIX A: MAGNON-ELECTRON
COUPLING AT FN INTERFACE

As in the main text, we consider a ferromagnetic insulator
occupying the region −LF < x < 0, coupled to a normal
metal at 0 < x < LN. If the normal metal is at zero temper-
ature, the spin current density at the ferromagnetic insulator–
metal interface is [35]

j s
x = h̄

4π

gr

A
〈m × ṁ〉x, (A1)

where gr is the real part of the spin-mixing conductance and m
is a unit vector pointing in the direction of the magnetization
at the interface. (We omit a second contribution to j s

x , which
is proportional to the imaginary part of the spin-mixing con-
ductance and vanishes upon time averaging.) Expressing m(r)
in terms of magnon creation and annihilation operators a†(r)

and a(r) for a macrospin of magnitude S located at position r
and normal ordering, one finds

〈m(r) × ṁ(r)〉x = i

S
〈ȧ(r)†a(r) − a(r)†ȧ(r)〉. (A2)

Substituting the mode expansion

a(r) =
∑

k

√
2 − δk,0

N
cos(kxx)eikyy+ikzzak, (A3)

where N is the number of macrospins in the ferromagnetic
insulator and the position r is taken at the center of the unit
cell, we find, for r at the ferromagnetic insulator–normal metal
interface at x = 0,

〈m(r) × ṁ(r)〉x = 2

NS

∑
k

(2 − δk,0)εk

h̄
b0

k, (A4)

so that

j s
x = gr

πAS

1

2N

∑
k

(2 − δk,0)εkb
0
k. (A5)

If the normal metal is at a finite temperature, the net spin
current across the ferromagnet–normal metal interface is the
sum of the spin current (A5) and a counterflow temp given
by the same expression, but with the magnon temperature Tm

replaced by the electron temperature Te. Hence, with a small
temperature difference �T = Tm − Te between normal metal
and ferromagnetic insulator, one finds

j s
x = −S ′

m�T , (A6)

with

S ′
m = gr

πAS

1

2N

∑
k

(2 − δk,0)εk
db0

k

dT
. (A7)

This is the same expression as Eq. (32) of the main text, where
the limit of a macroscopic sample with no exception for k = 0
was taken.

APPENDIX B: SIMPLE MODEL FOR
MAGNON-ELECTRON COUPLING AT FN INTERFACE

To make the general expression (A7) concrete, we describe
the interface between a ferromagnetic insulator (for x < 0)
and a normal metal (for x > 0) using the Hamiltonian

H = h̄2
(
p2 − p2

F

)
2m

+ V (x) + JsdS(r) · σ , (B1)

where p is the electron wave vector, pF the Fermi wave
number, m the electron mass, Jsd the sd exchange interaction
between conduction electrons and localized spins, V (x) a
potential chosen such that V (x) = V0 > h̄2p2

F/2m in the fer-
romagnetic insulator (for x < 0) and V (x) = 0 in the normal
metal (for x > 0), see Fig. 4. The spin operator

S(r) = 1

Va

∑
j

Sj δ(r − rj ), (B2)

where Sj is the macrospin operator and Va is the size of the
unit cell. For small deviations from a uniform magnetization
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FIG. 4. Simple interface model. Electrons incident from the nor-
mal metal (x > 0) reflect from the ferromagnetic insulator with a
scattering phase shift ϕ± for majority (+) and minority (−) electrons.
The ferromagnetic insulator is modeled by a band offset V0 larger
than the Fermi energy, ensuring that the electron wave-function
decays exponentially inside the insulator.

in the z direction, we may write

Sjz = S, Sj+ =
√

2Sa(rj ), Sj− =
√

2Sa(rj )†, (B3)

where rj is the center of the j th unit cell, S is the size of the
macrospin, and a(r) the magnon operator, which has the mode
expansion given in Eq. (A3). For this model, we now calculate
the mixing conductance gr and the spin current j s

x (0).
Calculation of the mixing conductance. The wave function

of an electron with wave vector p‖ to the interface, |p| = pF,
and spin ± is

ψ±(x) =
√

2

VN
eip‖·r ×

{
cos(pxx + ϕ±) if x > 0,

eq±x cos ϕ± if x < 0,
(B4)

where VN is the volume of the normal metal, q2
± = 2m(V0 ±

SJsd ) − p2
x , tan ϕ± = −q±/px , and p2

x = p2
F − p2

‖ . Replacing

S(r) by Sez, we find for the real part of the mixing conduc-
tance

gr = 2
∑

p‖

sin2(ϕ+ − ϕ−) ≈ 2
∑

p‖

(SJsd )2p2
x

V 2
0 (2mV0 − p2

x )
, (B5)

where in the second equality we expanded to second order in
Jsd.

Calculation of the spin current j s
x (0). We calculate the spin

current to order J 2
sd using the Fermi golden rule. From the

matrix element

〈ψ ′
−, nk − 1|H|ψ+, nk〉

= p2
xJsd

√
S

mV0LN

√
N (2mV0 − p2

x )
× √

nk δp′
‖=p‖+k‖ , (B6)

where |ψ+, nk〉 (|ψ ′
−, nk − 1〉) is a state with an electron of

spin + (−) and transverse wave vector p‖ (p′
‖) and nk (nk − 1)

magnons in the model labeled by the wave vector k. In the
calculation of the matrix element (B6) we assumed that all
magnon momenta are small in comparison to the Fermi mo-
mentum, so that we may neglect the change of the magnitude
of the longitudinal wave-vector component px of the electrons
upon absorption of a magnon, and we neglected the exception
arising from the different normalization of the k = 0 magnon
mode (see Appendix A). From the Fermi golden rule, we then
obtain the spin current

j s
x (0) = 1

πAS

⎛
⎝∑

p‖

2(SJsd )2p2
x

V 2
0

(
2mV0 − p2

x

)
⎞
⎠(

1

N

∑
k

εk
db0

k

dT

)
�T ,

(B7)

consistent with Eq. (A7).
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