6 research outputs found

    Is There Slow Slip on the Wasatch Fault?

    Get PDF
    To accurately determine the earthquake hazard posed by a fault, we need to understand both strain accumulation and release along the fault. Strain accumulates during aseismic periods but it is released during fault slip events that can be either seismic or aseismic. Aseismic slow slip events are motions similar to earthquakes but they occur over much longer timescales. Slow slip is not felt at the Earth’s surface but it can be recorded in GPS time series. A deformation modeling tool that was applied in Guerrero, Mexico by Lowry et. al. (2001) fits a hyperbolic tangent function to GPS time series and can be used to distinguish slow slip events from noise in the data and from non-tectonic deformation. Time series from the Plate Boundary Observatory, Wasatch Front GPS Network, and Basin and Range Geodetic Network were analyzed for transient deformation during the period encompassing 2004 to 2008. Data suggests several transient motions including a possible slow slip event beginning in mid-2008 and continuing into 2009. Both seismic and aseismic slip influence the earthquake cycle, and slow fault slip events offer a window into frictional properties on fault surfaces that will rupture in future earthquakes. Consequently, as we increase our understanding of aseismic slip and why it occurs, we eventually may expect to develop predictive models of fault slip through time by combining measurements of aseismic and seismic slip in models that reflect the physics of frictional slip on faults

    Release of mineral-bound water prior to subduction tied to shallow seismogenic slip off Sumatra

    Get PDF
    Plate-boundary fault rupture during the 2004 Sumatra-Andaman subduction earthquake extended closer to the trench than expected, increasing earthquake and tsunami size. International Ocean Discovery Program Expedition 362 sampled incoming sediments offshore northern Sumatra, revealing recent release of fresh water within the deep sediments. Thermal modeling links this freshening to amorphous silica dehydration driven by rapid burial-induced temperature increases in the past 9 million years. Complete dehydration of silicates is expected before plate subduction, contrasting with prevailing models for subduction seismogenesis calling for fluid production during subduction. Shallow slip offshore Sumatra appears driven by diagenetic strengthening of deeply buried fault-forming sediments, contrasting with weakening proposed for the shallow Tohoku-Oki 2011 rupture, but our results are applicable to other thickly sedimented subduction zones including those with limited earthquake records

    Velocity‐Porosity Relations in Carbonate and Siliciclastic Subduction Zone Input Materials

    No full text
    Abstract The mechanical, physical, and frictional properties of incoming materials play an important role in subduction zone structure and slip behavior because these properties influence the strength of the accretionary wedge and megathrust plate boundary faults. Incoming sediment sections often show an increase in compressional wave speed (Vp) and a decrease in porosity with depth due to consolidation. These relations allow seismic‐velocity models to be used to elucidate properties and conditions at depth. However, variations in these properties are controlled by lithology and composition as well as cementation and diagenesis. We present an analysis of shipboard measurements of Vp and porosity on incoming sediment cores from International Ocean Discovery Program (IODP) expeditions at the Hikurangi Margin, Nankai Trough, Aleutian Trench, Middle America Trench, and Sunda Trench. Porosity for these samples ranges from 5% to 85% and Vp ranges from 1.5 to 6 km/s. Vp‐porosity relations developed by Erikson & Jarrad (1998), https://doi.org/10.1029/98JB02128 and Hoffman & Tobin (2004) https://10.2973/odp.proc.sr.190196.355.2004, with a critical porosity of ∌30%, can represent carbonate‐poor (<50 wt% CaCO3), mainly hemipelagic, incoming sediment regardless of the margin. But these relations tend to underestimate porosity in incoming sediments with carbonate content greater than 50 wt%, which appear to have a critical porosity of between 45% and 50%. This discrepancy will lead to inaccuracy in estimates of fluid budget and overpressure in subduction zones. The velocity‐porosity relation in carbonate sediments is non‐unique due to the complexity that results from the greater susceptibility of carbonate rocks to diagenetic processes

    Predicting Rock Strength Variability at Stratigraphic Interfaces in Caprock Lithologies at Depth: Correlation Between Outcrop and Subsurface

    No full text
    Open faults and fractures act as a major control of fluid flow in the subsurface, especially in fine-grained, low-permeability lithologies. These discontinuities commonly form a part of seal bypass systems, which can lead to the failure of hydrocarbon traps, CO2 geosequestration sites, and waste and injected fluid repositories. We evaluate mesoscale variability in fracture density, morphology and the variability in elastic moduli in the Jurassic Carmel Formation, a proposed seal to the underlying Navajo Sandstone for CO2 geosequestration. By combining mechanostratigraphic outcrop observations with elastic moduli derived from wireline-log data, we characterize the variability in fracture pattern and morphology with the observed variability in rock strength within this heterolithic top seal. Outcrop inventories of discontinuities show that fracture densities decrease as bed thickness increases and that fracture propagation morphology across lithologic interfaces vary with changing interface type. Dynamic elastic moduli, calculated from wireline-log data, show that Young\u27s modulus ranges by as much as 40 GPa (5,801,510 psi) across depositional interfaces and by an average of 3 GPa (435,113 psi) across the reservoir-seal interface. We expect that the mesoscale changes in rock strength will affect the distributions of localized stress and thereby influence fracture propagation and fluid flow behavior within the seal. These data provide a means to closely tie outcrop observations to those derived from subsurface data and estimates of subsurface rock strength. The characterization of rock strength variability is especially important for modeling the response of caprocks to changing stress conditions associated with increased fluid pressures and will allow for better site screening and subsurface fluid management

    Geophysical Properties Within the San Andreas Fault Zone at the San Andreas Fault Observatory at Depth (SAFOD) and Their Relationships to Rock Properties and Fault Zone Structure

    Get PDF
    We examine the relationships between borehole geophysical data and physical properties of fault‐related rocks within the San Andreas Fault as determined from data from the San Andreas Fault Observatory at Depth borehole. Geophysical logs, cuttings data, and drilling data from the region 3‐ to 4‐km measured depth of the borehole encompass the active part of the San Andreas Fault. The fault zone lies in a sequence of deformed sandstones, siltstone, shale, serpentinite‐bearing block‐in‐matrix rocks, and sheared phyllitic siltstone. The borehole geophysical logs reveal the presence of a low‐velocity zone from 3190 to 3410 m measured depth with Vp and Vs values 10–30% lower than the surrounding rocks and a 1–2 m thick zone of active shearing at 3301–3303 m measured depth. Seven low‐velocity excursions with increased porosity, decreased density, and mud‐gas kick signatures are present in the fault zone. Geologic data on grain‐scale deformation and alteration are compared to borehole data and reveal weak correlations and inverse relationships to the geophysical data. In places, Vp and Vs increase with grain‐scale deformation and alteration and decrease with porosity in the fault zone. The low‐velocity zone is associated with a significant lithologic and structural transition to low‐velocity rocks, dominated by phyllosilicates and penetratively foliated, sheared rocks. The zone of active shearing and the regions of low sonic velocity appear to be associated with clay‐rich rocks that exhibit fine‐scale foliation and higher porosities that may be a consequence of the fault‐related shearing of foliated and fine‐grained sedimentary rocks

    The role of input materials in shallow seismogenic slip and forearc plateau development

    No full text
    Drilling the input materials of the north Sumatran subduction zone, part of the 5000 km long Sunda subduction zone system and the origin of the Mw ∌9.2 earthquake and tsunami that devastated coastal communities around the Indian Ocean in 2004, was designed to groundtruth the material properties causing unexpectedly shallow seismogenic slip and a distinctive forearc prism structure. The intriguing seismogenic behavior and forearc structure are not well explained by existing models or by relationships observed at margins where seismogenic slip typically occurs farther landward. The input materials of the north Sumatran subduction zone are a distinctively thick (as thick as 4-5 km) succession of primarily Bengal-Nicobar Fan-related sediments. The correspondence between the 2004 rupture location and the overlying prism plateau, as well as evidence for a strengthened input section, suggest the input materials are key to driving the distinctive slip behavior and long-term forearc structure. During Expedition 362, two sites on the Indian oceanic plate ∌250 km southwest of the subduction zone, Sites U1480 and U1481, were drilled, cored, and logged to a maximum depth of 1500 meters below seafloor. The succession of sediment/rocks that will develop into the plate boundary detachment and will drive growth of the forearc were sampled, and their progressive mechanical, frictional, and hydrogeological property evolution will be analyzed through postcruise experimental and modeling studies. Large penetration depths with good core recovery and successful wireline logging in the challenging submarine fan materials will enable evaluation of the role of thick sedimentar y subduction zone input sections in driving shallow slip and amplifying earthquake and tsunami magnitudes, at the Sunda subduction zone and globally at other subduction zones where submarine fan-influenced sections are being subducted
    corecore