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ABSTRACT 

To accurately determine the earthquake hazard posed by a fault, we need to understand 

both strain accumulation and release along the fault. Strain accumulates during aseismic periods 

but it is released during fault slip events that can be either seismic or aseismic. Aseismic slow 

slip events are motions similar to earthquakes but they occur over much longer timescales. Slow 

slip is not felt at the Earth’s surface but it can be recorded in GPS time series. A deformation 

modeling tool that was applied in Guerrero, Mexico by Lowry et. al. (2001) fits a hyperbolic 

tangent function to GPS time series and can be used to distinguish slow slip events from noise in 

the data and from non-tectonic deformation. Time series from the Plate Boundary Observatory, 

Wasatch Front GPS Network, and Basin and Range Geodetic Network were analyzed for 

transient deformation during the period encompassing 2004 to 2008. Data suggests several 

transient motions including a possible slow slip event beginning in mid-2008 and continuing into 

2009. Both seismic and aseismic slip influence the earthquake cycle, and slow fault slip events 

offer a window into frictional properties on fault surfaces that will rupture in future earthquakes. 

Consequently, as we increase our understanding of aseismic slip and why it occurs, we 

eventually may expect to develop predictive models of fault slip through time by combining 

measurements of aseismic and seismic slip in models that reflect the physics of frictional slip on 

faults.  
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1 INTRODUCTION     
 

To accurately determine the earthquake hazard posed by a fault, we need to understand 

both strain accumulation and release along the fault. Strain accumulates during aseismic periods 

but it can be released during seismic and aseismic periods. Seismic release of strain results in 

earthquakes. Aseismic strain release is commonly known as aseismic or slow slip and it occurs 

over a long time period. It is expected that aseismic moment release will be a little smaller that 

seismic release because the amount of slip that occurs during an aseismic event is generally two 

or more orders of magnitude smaller that the slip that occurs during an earthquake, even though 

the area activated during an aseismic event many be larger.  

 Previously, slow slip events have been identified on plate boundaries in Mexico (Larson 

et. al., 2004; Lowry et al, 2001; Lowry et. al., submitted), Cascadia (Brudzinski and Allen, 2007; 

Dragert et. al., 2001), New Zealand (Douglas et. al., 2005), Japan (Hirose et. al., 1999; Ozawa et. 

al., 2001: Obara et. al., 2004), Alaska (Freymueller et. al., 2003), and Costa Rica (Protti et. al., 

2005) using continuous GPS network observations. These locations correspond to subduction 

margins but slow slip has also been seen within the continental interior on a large-scale normal 

detachment in western Nevada (Davis et. al., 2006).   

The purpose of this study is to determine if slow slip is occurring along the Wasatch Fault 

by examining GPS measurements from stations near the fault. Currently, there are two main 

hypothesized mechanisms for the occurrence of slow slip events. It could be a frictional 

rheological response (Liu & Rice, 2005) or a fluid-related process (Julian, 2002; Melbourne & 

Webb, 2003). If slow slip events are seen on both large subduction thrust faults and smaller 

normal faults in continental interiors, then it would add to growing evidence that slow slip is a 
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frictional rheological response common to all types of faults and not a fluid-related process 

requiring special conditions.  

 

2 THE WASATCH FAULT 

 The Wasatch fault is an active, west dipping (~33°) normal fault, which forms the eastern 

boundary of the Basin and Range province (Bruhn et. al., 2005; Machette et. al., 1991; 

Malservisi et. al., 2003). The 370-km-long fault extends from southern Idaho into Utah. It is 

divided into ten segments, which are 30 to 60 km in length; each segment is capable of 

generating magnitude 7+ earthquakes. The central segments (Brigham City to Nephi) have 

recurrence intervals of 1300 to 2500 years, resulting in an average recurrence interval of three to 

five hundred years for the entire fault. Faulting may have started in the central portion of the 

Wasatch fault 17 million years ago and it was almost certainly underway 10 to 12 million years 

ago (Bruhn et. al., 2005). The average horizontal displacement for the Wasatch Fault over the 

last 5600 years is 3.0-4.5 mm/yr (Malservisi et. al., 2003) and the vertical displacement is 

approximately 1 mm/year (Bruhn et.al., 2005; Hetzel and Hampel, 2006).  

 

3 METHODS 

Processed continuous GPS coordinate time series were obtained from the University 

Navstar Consortium (UNAVCO) archive (http://facility.unavco.org/data/gnss/perm_sta.php). 

These times series came from stations in Utah that are part of three GPS Networks in North 

America. The Plate Boundary Observatory (PBO) is part of the Earthscope program and consists 

of 852 GPS stations at various locations in western North America. The Basin and Range 

Geodetic Network (BARGEN) consists of 69 GPS stations in the Basin and Range province and 
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the Wasatch Front GPS network consists of 118 stations, only 11 of which are permanent, 

spanning a 100-km area surrounding the Wasatch fault. While some stations in these networks 

have been in operation since mid-1996, only the period from 2004 to 2008 was examined in this 

study, as that is the time period for which precise coordinate data are available in the UNAVCO 

archive.  

 To estimate transient displacements in the GPS data the coordinate time series are fit 

with a hyperbolic tangent function (HTF) of the form: 

    (1) 

in which  are GPS site coordinates at time t,  are coordinates at a reference time,  is a 

background velocity,  is anomalous displacement during the ith of n slow slip events, T0i is the 

median time of the ith event, and τ is a timescale parameter roughly corresponding to one-fourth 

of the total duration of the event. The time series data were fitted with the HTF using a linear 

inversion algorithm to estimate the steady-state velocity and transient displacement and a grid-

search algorithm to optimize the time parameters T0i and τ (Lowry, 2001). The results can be 

used to distinguish slow slip events from correlated noise and non-tectonic deformation signals. 

For this study the HTF was applied to GPS time series from 13 stations located between latitudes 

37° N and 42° N (Figure 1). The data used in this study are from the period January 2004 to 

February 2009. The algorithm to estimate transient displacement is freely available at 

http://anquetil.colorado.edu/~arlowry/code_release.html.  

 Once the transient displacements have been estimated via the HTF analysis, slow slip 

events can be distinguished from noise and non-tectonic deformation signals that otherwise 
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might be mistaken for slow slip. A transient in the data from the Wasatch front might be a slow 

slip event if 1) the displacement is dominantly in the east-west component,i.e., permendicular to 

the fault, 2) the transient is seen at several neighboring sites, and 3) the total displacement is 

significantly greater than the 95% confidence interval of the estimate at each of the sites. If 

displacement is dominantly in the vertical component, the transient is more likely to be non-

tectonic deformation due to mass loading at the surface, and if the displacement is smaller than 

the confidence interval it probably reflects correlated noise in the data. The horizontal 

displacement does not need to be universally larger than the vertical, as a fault slip event on a 

normal fault geometry might reasonably be expected to produce a larger vertical than horizontal 

signal at some locations. However, elastic loading almost always produces a vertical response 

many times greater than the horizontal, so a transient that consistently shows vertical greater than 

the horizontal is not a slow slip event.  

 

4 RESULTS 

 The GPS data show evidence of several transient displacements. During the January 2004 

to February 2009 interval considered here there are four main transients seen in most of the 

stations. Some of these transients may be slow slip events while others indicate non-tectonic 

deformation or station noise.  The average root mean squared (RMS) residual is 1.141 mm; this 

is the average amount by which the magnitude of the GPS measurement differs from the trend 

line. Time series from four of the stations are shown in figure 2. Location information and 

calculated results for individual stations are given in appendix A.  
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Station P057 

Only measurements from September 2004 to February 2009 were available for the P057 

station. Three transients were identified during this interval.  The first transient has a mid-time of 

2006.09 and occurs over a period of approximately one month. Displacement is mostly 

downward. The second transient has a mid-time of 2007.19 and a period of 2.06 years. This 

transient is mostly upward (~11.8 mm) although there is more displacement eastward (~3.1 mm) 

for this transient then was present in the 2006 transient. The third transient has a mid-time of 

2008.50 and a period of about one year. This transient shows the majority of displacement is 

westward with minor displacement upwards. The 2006 and 2008 events have a northward 

displacement of approximately 1 mm. In 2007 the displacement has roughly the same magnitude 

but it is to the south.    

Station P122 

 Data were available for the P122 station from June 2004 to February 2009, with a gap 

from mid-July to November 2005. Two transients were found in the available data. The first has 

a mid-time of 2007.03 and occurs over 3.37 years. The displacement for this event is greater than 

what was seen in the 2007 event at P057, approximately 3.9 mm eastward and 17.6 mm upward. 

The magnitude of the north displacement is 3.7 mm to the south, approximately equal to the 

magnitude of the east component. The second transient has a mid-time of 2008.52 and occurs 

over a period of slightly less than one year. The east displacement for this event is equal to the 

magnitude of the vertical displacement, with motion to the west and upwards, and a smaller 

component of motion to the north. 
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Station LTUT 

 GPS measurements at LTUT are from the full time interval considered in this study 

(January 2004 to February 2009). However, prior to April 19, 2008 the north coordinates 

oscillate, forming a sinusoidal wave, which masks any transients occurring before April 2008. 

The cause of these oscillations is not known but could be due to instrument error, a 

monumentation problem, or positioning of the station near a fracture, which would allow the 

back and forth motion seen in the coordinate time series. The end of these oscillations coincides 

with the date of the last visit to the station on April 18. Using only GPS measurements taken 

after April 18, 2008 we calculated a transient displacement with a mid-time of 2008.51 and a 

period of approximately seven days. This event might have had a longer period but the earlier 

portion of the event is cut-off. Displacement is largely westward with smaller displacements to 

the north and downwards.  

Station P124 

 The P124 station was established in 2007 so only data from March 2007 to February 

2009 are available for this site. Only one transient displacement was calculated for this station, as 

the addition of more events did not improve the fit of the HTF to the data. This transient has a 

mid-time of 2008.47 and a period of 1.02 years. The displacement is westward and about 0.7 mm 

greater than the downward component of displacement.   

Station HWUT 

Only data from February 2006 to February 2009 is available in the UNAVCO archive for 

HWUT even though the station was established in October 2004. However, there are not many 

measurements recorded prior to mid-2007. Similar to P124, only one transient displacement was 

calculated for HWUT. This transient has a mid-time of 2008.46 and a period of approximately 
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eight months. While the westward displacement for this transient is fairly large (~5 mm) the 

downward component is greater (~7 mm).  

Station EOUT 

 Four transient displacements were calculated from the EOUT data. The first transient has 

a mid-time of 2005.37 and occurs over an eight month period. Motion is dominantly to the west. 

The second transient has a mid-time of 2006.41 and a period of 13 days. For this transient the 

displacement is also dominantly westward. The third transient has a mid-time of 2007.36 and 

1.86-year period. Here the vertical component has the greatest magnitude displacement upward. 

The final event seen at this station has a mid-time of 2008.51 and period of approximately six 

months. For this event the largest magnitude displacement is the east component although the 

displacement in the vertical component is only slightly less and motion is to the west and 

downwards.       

Station COON 

At COON four transients were calculated. The first of these transients has a mid-time of 

2005.39 and occurred over four days. Displacement is primarily eastward. The second transient 

is located close to the first, with regard to time. The mid-time of this event is 2005.89 and it has a 

period of approximately three months. For this transient, displacement is mostly downward. The 

third transient has a mid-time of 2007.06 and occurs over a 1.85-year period. Like the second 

transient, the majority of displacement is downward. The fourth transient has a mid-time of 

2008.76 and occurs over approximately two months. Here the displacement is mainly westward.     

Station CEDA 

 Three transient displacements were identified in the time series. The first has a mid-time 

of 2005.60 and period of three months. The dominant displacement is westward. The second 
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transient is at 2007.06 and occurs over a period of 2.18 years. For this event the vertical 

displacement is approximately 20 mm upward, significantly greater than the east component of 

displacement (~0.04 cm, westward). A transient in mid-2008 is also seen at CEDA. This 

transient has a period of 6 months. Here, again, we see the majority of displacement occurring in 

the east component with motion to the west and only minor motion downward.  

Station P117 

 GPS measurements at P117 began in mid-2006 so the May 2006 to February 2009 time 

interval was examined and three transients were found (Figure 2). An event at 2006.91 has a 

period of approximately three months. The displacement is mostly in the vertical component (~3 

mm) with movement upwards and displacement to the west and south slightly greater than 1 mm. 

Another event at 2007.53 occurs over a 2 month period. For this event an upward displacement 

of approximately 8 mm was calculated. The southward and westward displacements are less than 

1 mm. Similar to stations discussed previously, the final event seen at P117 occurred in mid-

2008. The vertical and east displacements have very similar magnitudes, ~6.0 mm, downward, 

and ~5.7 mm, westward. There is a very small (~0.3 mm) northward displacement.  

Station LMUT 

Data for LMUT is available for May through June 2006 and April 2007 to February 

2009. One transient found in the LMUT data has a mid-time of 2007.49 and period of 2.40 years. 

This event has a upward displacement of 34.6 mm whereas magnitudes of the east and north 

displacements are 8.2 mm, eastward, and 1.2 mm, southward. Another transient occurs over four 

days and has a mid-time of 2008.69. The vertical displacement is only 7 mm, upward, but it is 

still greater than either the east or north components. The magnitude of the east displacement is 

actually less than the 95% confidence interval of the estimation and motion is to the east.    
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Station FOOT 

We have continuous GPS measurements for the FOOT station from January 2004 to 

February 2009, but only two transient displacements were found in the data.  The first event has 

a mid-time of 2007.09 and a period of 2.72 years. The eastward and southward displacements are 

much less than the approximately 2 cm upward displacement. The second event has a mid-time 

of 2008.55 and a period of approximately two months. For this event displacement is dominantly 

westward with minor motion to the south and downwards.  

Station P012 

P012 was established in March 2006 and we only found one transient displacement in the 

data. This transient has a mid-time of 2007.37 and occurs over 2.30 years. The eastward 

displacement is fairly large (~8 mm) but it is still less than the upward motion in the vertical 

component (~11.4 mm).  

Station P009 
 
 P009 was established at the end of January 2006. We examined measurements from the 

time the station was established until February 2009 and found three transient displacements. 

The first event was seen at 2006.20 and has a period of approximately 19 days. The magnitude of 

the displacement, eastward, is 1 mm greater than the magnitude of the upward displacement. The 

second event is at 2007.43 and occurs over about seven months. For this transient, the eastward 

and upward motions have about the same magnitudes but the vertical component is slightly 

greater. The third transient has a mid-time of 2008.06 and a period of approximately 8 months. 

The north component has slightly more motion northward than the east component has to the 

east but both are greater than the upward, vertical displacement. 
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5 DISCUSSION 

 Most of the stations show transients in late 2005 to early 2006, mid-2007, and/or mid-

2008. The 2005/2006 event is seen at only five of the stations and four of those stations show 

motion dominantly in the east component. For all of these stations the displacement is greater 

than the 95% confidence interval indicating that this transient is not correlated noise. This event 

may be a slow slip event but we would like to see it at more of the stations. However, these five 

stations are the only ones with usable measurements from this time period. In order to determine 

if this event is in fact a slow slip event we will need to examine more stations with measurements 

available for the mid-2005 to early 2006 time period. Davis et. al. (2006) examined the COON 

and CEDA sites over the earlier part of the time period we studied and concluded that the 

displacements seen were probably due to changing lake levels and hydrological loading.   

 A displacement in 2007 is seen at all stations. For the majority of stations the event 

occurs in mid-2007. Displacement for the mid-2007 event is dominantly in the vertical 

component and at EOUT the magnitude of the east displacement is less than the confidence 

interval. At eight of the stations the 2007 event has a period greater than 1.8 years, ranging up to 

approximately 3.4 years. The long period, dominantly vertical displacement, and large variations 

in the mid-time of the event indicate that the mid-2007 event likely is not due to slow slip. The 

motion may reflect interannual variations in surface mass loading.  

 The mid-2008 event is seen at 12 of the 13 examined stations. At nine of these stations 

the magnitude of the east component is greater than or equal to the magnitude of the vertical 

component. Of the other three stations which show the event, HWUT and P117 show fairly 

significant displacement in the east component. The displacement at LMUT is very small and 

may be perturbed by noise. The only station that does not show the mid-2008 event is P012 
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which is located some distance south and east of the trace of the Wasatch fault and may give us 

some indication that the transient motion decreases to zero before it reaches this station.  While 

there is some variability in the mid-times of the 2008 event, it is less than what was seen for the 

2007 event. These small variations in the mid-time are consistent with what we would expect to 

see for a slow slip event. Overall, the mid-2008 event appears to be a slow slip event.  

 A vector plot of the horizontal motion for the 2008 event shows dominantly northwest 

motion with slight southwest motion at some of the sites (Figure 3). The LMUT station is the 

only one with significant variation from this trend. This indicates that the signal we see at LMUT 

does not have the same causes as the signals we see at other stations. The anomalous direction 

and short period of the 2008 event found at LMUT indicate that it is probably surface mass 

loading or correlated noise. Examination of the vector plot shows that the largest displacements 

occur at the stations closest to the fault with smaller displacements to the west. Further 

inspection of variations in the mid-times of the 2008 event shows that, in general, the event 

occurs earliest near the fault and then at progressively later times as we move to the west. 

 Adding the vertical component to the vector plot provides further information about the 

mid-2008 event (Figure 4). The vertical component tends to be noisy as it is superposed by large 

loading signals that cannot be easily separated from signals of tectonic deformations. However, 

the vector plot suggests that the vertical is small at sites west of the Wasatch fault but tends to 

have large subsidence at stations along the fault and to the east. The exception to this trend is 

LMUT which exhibits anomalously large uplift near the fault. This provides further evidence that 

the signal at LMUT is not a slow slip event.    
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6 CONCLUSIONS 

 While many transient displacements are seen in the GPS measurements, several lines of 

evidence point towards the mid-2008 transient being a slow slip event. This event is seen at 

almost all of the examined GPS stations and the stations have a consistent motion to the 

northwest for this event. Displacement at the majority of sites where we see the mid-2008 event 

is greater than the 95% confidence interval for the estimation and it is dominantly in the east 

component. The presence of slow slip on faults in the continental interior, like the Wasatch fault, 

indicates slow slip is a frictional rheological response instead of a fluid-related process.  

 Further work will involve analysis of all GPS sites in the region to determine how 

widespread the 2008 event is and where the transient motion decreases to zero. Analysis of GPS 

measurement over a time period earlier than what was examined in this study could be used to 

determine the recurrence interval of slow slip events on the Wasatch fault. Another important 

step is to model slip on the Wasatch fault, and possibly on detachments projected from the base 

of the Wasatch, which would enable us to characterize the source location of the deformation.   
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Figure 1.  Map of GPS sites. Map shows locations of the GPS sites (circles) from the Plate 
Boundary Observatory, the Basin and Range Geodetic Network, and the Wasatch Front GPS 
network that were used in this study. The trace of the central (red) and distal (yellow) segments 
of the Wasatch fault are also shown.   
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(a)                                                                             (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       (c)                                                                                (d) 
 
Figure 2. Representative time series, Time series from (a) P057, (b) EOUT, (c) CEDA, and (d) 
P117. Filled red circles are measured daily coordinates and blue lines are the best-fit functions of 
the form given by equation (1).  
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Figure 3. Measured anomalous horizontal displacement during the 2008 slow slip event. Thick 
blue vectors, with 95% confidence ellipse, represent the horizontal transient displacement from 
equation (1). The trace of the Wasatch fault is shown in red.  
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Figure 4. Measured anomalous horizontal and vertical displacement during the 2008 slow slip 
event. Thick blue vectors, with 95% confidence ellipse, represent the horizontal transient 
displacement and thick black vectors, with 95% confidence ellipse, represent the vertical 
transient displacement, both from equation (1). The trace of the Wasatch fault is shown in red.  
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APPENDIX A 
Information on GPS Stations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



E ast North Vertical E ast North Vertical
2005.37 0.658 0.1645 ‐0.37 +/‐ 0.02 ‐0.05 +/‐ 0.02 ‐0.25 +/‐ 0.09
2006.406 0.036 0.0090 ‐0.25 +/‐ 0.01 0.02 +/‐ 0.01 0.08 +/‐ 0.06
2007.362 1.864 0.4660 0.03 +/‐ 0.02 ‐0.20 +/‐ 0.02 0.94 +/‐ 0.10
2008.513 0.468 0.1170 ‐0.39 +/‐ 0.01 0.01 +/‐ 0.02 ‐0.33 +/‐ 0.06
2005.393 0.011 0.0028 0.15 +/‐ 0.01  0.12 +/‐ 0.02  ‐0.09 +/‐ 0.07
2005.887 0.209 0.0523 ‐0.18 +/‐ 0.01  ‐0.10 +/‐ 0.02 ‐0.24 +/‐ 0.07
2007.062 1.854 0.4635 0.12 +/‐ 0.02 ‐0.14 +/‐ 0.03 ‐0.13 +/‐ 0.07
2008.764 0.099 0.0248 ‐0.28 +/‐ 0.02  ‐0.04 +/‐ 0.02 ‐0.13 +/‐ 0.07
2005.601 0.209 0.0523 ‐0.12 +/‐ 0.01 0.12 +/‐ 0.01 ‐0.05 +/‐ 0.05
2007.062 2.181  0.5453 ‐0.04 +/‐ 0.02 ‐0.10 +/‐ 0.02 2.05 +/‐ 0.07
2008.6 0.453 0.1133 ‐0.33 +/‐ 0.01 0.09 +/‐ 0.01 ‐0.09 +/‐ 0.04

2007.094 2.723 0.6808 0.05 +/‐ 0.02 ‐0.22 +/‐ 0.02 2.21 +/‐ 0.06
2008.545 0.178 0.0445 ‐0.27 +/‐ 0.01 0.04 +/‐ 0.01 ‐0.01+/‐ 0.03
2006.201 0.054 0.0135 0.46 +/‐ 0.03 0.03 +/‐ 0.03 0.36 +/‐ 0.11
2007.431 0.557 0.1393 0.50 +/‐ 0.02 ‐0.07 +/‐ 0.02 0.57 +/‐ 0.08
2008.059 0.691 0.1728 0.23 +/‐ 0.02 0.27 +/‐ 0.03 0.18 +/‐ 0.09

P012 ‐0.49 +/‐ 0.01 0.03 +/‐ 0.02 ‐0.61 +/‐ 0.05 2007.366 2.302 0.5755 0.83 +/‐ 0.03 ‐0.19 +/‐ 0.03 1.14 +/‐ 0.11 0.1300 38.0970 ‐109.3340
2006.086 0.102 0.0255 0.05 +/‐ 0.01 0.12 +/‐ 0.01 ‐0.25 +/‐ 0.05
2007.193 2.064 0.5160 0.31 +/‐ 0.02 ‐0.11 +/‐ 0.02 1.18 +/‐ 0.07
2008.518 1.000 0.2500 ‐0.24 +/‐ 0.01 0.11 +/‐ 0.02 0.06 +/‐ 0.05

P124 0.11 +/‐ 0.02 0.25 +/‐ 0.03 0.03 +/‐ 0.09 2008.472 1.020 0.2550 ‐0.57 +/‐ 0.03 ‐0.20 +/‐ 0.04 ‐0.50 +/‐ 0.13 0.1700 41.5576 ‐111.9574
LTUT ‐0.29 +/‐ 0.03  ‐0.09 +/‐ 0.04  ‐0.08 +/‐ 0.11 2008.514 0.020 0.0050 ‐0.24 +/‐ 0.02 0.07 +/‐ 0.02  ‐0.07 +/‐ 0.07 0.1237 41.5921 ‐112.2468

2007.031 3.365 0.8413 0.39 +/‐ 0.02 ‐0.37 +/‐ 0.03 1.76 +/‐ 0.10
2008.52 0.960 0.2400 ‐0.21 +/‐ 0.01 0.05 +/‐ 0.01 0.21 +/‐ 0.04

HWUT 0.08 +/‐ 0.01 ‐0.10 +/‐ 0.01 0.30 +/‐ 0.05 2008.461 0.667 0.1668 ‐0.48 +/‐ 0.02 0.12 +/‐ 0.02  ‐0.70 +/‐ 0.07 0.1500 41.6072 ‐111.5651
2007.479 2.402 0.6005 0.82 +/‐ 0.08  ‐0.12 +/‐ 0.09 3.46 +/‐ 0.30
2008.689 0.011 0.0028 0.01 +/‐ 0.02  0.09 +/‐ 0.03 0.70 +/‐ 0.09
2006.909 0.181 0.0453 ‐0.13 +/‐ 0.02 ‐0.17 +/‐ 0.02 0.30 +/‐ 0.09
2007.533 0.154 0.0385 ‐0.08 +/‐ 0.02 ‐0.05 +/‐ 0.02 0.81 +/‐ 0.09
2008.501 1.318 0.3295 ‐0.57 +/‐ 0.03 0.03 +/‐ 0.04 ‐0.60 +/‐ 0.14 

‐111.7514

S tation Longitude

‐111.9290

‐112.1210

‐112.8605

‐113.8050

‐112.223038.4800

39.3690

40.6807

40.6526

41.2530

Velocity (cm/yr)
Mid‐time Period (years ) Tau

‐0.11 +/‐ 0.06

RMS Latitude

0.1341

Displacement (cm)

E OUT 0.02 +/‐ 0.01 0.03 +/‐ 0.01

0.1200

C OON ‐0.26 +/‐ 0.01 ‐0.01 +/‐ 0.01 ‐0.07 +/‐ 0.06 0.1677

0.1170

C E DA ‐0.27 +/‐ 0.01 ‐0.08 +/‐ 0.01 ‐0.21 +/‐ 0.03

FOOT ‐0.35 +/‐ 0.00 ‐0.00 +/‐ 0.01 ‐0.37 +/‐ 0.02

0.1888

P057 ‐0.33 +/‐ 0.01 ‐0.11 +/‐ 0.01 ‐0.27 +/‐ 0.04 0.1103

P009 ‐0.69 +/‐ 0.02 ‐0.20 +/‐ 0.02 ‐0.44 +/‐ 0.07

41.7570 ‐112.6230

P122 ‐0.29 +/‐ 0.01 ‐0.02 +/‐ 0.01 ‐0.54 +/‐ 0.03 0.1223 41.6354 ‐112.3319

‐111.9283

P117 ‐0.09 +/‐ 0.03 ‐0.07 +/‐ 0.03 ‐0.06 +/‐ 0.11 0.1398

LMUT ‐0.68 +/‐ 0.04 ‐0.03 +/‐ 0.04 ‐1.59 +/‐ 0.14 0.1481 40.2614

40.4352

 
 
 

 20



AUTHOR’S BIOGRAPHY 
 
 Tamara Jeppson, raised in Tremonton, Utah, graduated in 2005 from Bear River High 
School as valedictorian. She entered Utah State University (USU) that autumn as a presidential 
scholar and dual geology and physics major. During the fall of 2006 Tamara began a research 
project with Dr. Jim Evans, studying the San Andreas Fault. In fall 2008 she started to look for 
slow slip on the Wasatch fault with Dr. Anthony Lowry. Tamara has also participated in a 
summer internship at the Pacific Northwest National Lab working with George Last. While at 
USU, Tamara received the Eccles Undergraduate Research Fellowship, College of Science mini-
grant, Society of Exploration Geophysicists undergraduate scholarship, and Barry M. Goldwater 
scholarship. She has supplemented her school work as an Undergraduate Teaching Fellow for the 
Geology Department, the Sigma Pi Sigma physics honors society vice president, and, at various 
times, a public relations officer, treasurer, and president in the Institute Women’s Association. 
 
 After she graduates in May 2009, Tamara plans to serve a mission for the LDS Church in 
the Spokane, Washington area. In the autumn of 2011 she will begin earning her graduate degree 
in geophysics at the University of Wisconsin-Madison.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
“The most beautiful thing we can experience is the mysterious. It is the source of all true art and 

all science. He to whom this emotion is a stranger, who can no longer pause to wonder and 
stand rapt in awe, is as good as dead: his eyes are closed.” 

                Albert Einstein 
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