8 research outputs found

    ACTH and PMX53 Recover Synaptic Transcriptome Alterations in a Rat Model of Infantile Spasms

    Get PDF
    We profiled the gene expression in the hypothalamic arcuate nuclei (ARC) of 20 male and 20 female rats to determine the infantile spasms (IS) related transcriptomic alteration of neurotransmission and recovery following two treatments. Rats were prenatally exposed to betamethasone or saline followed by repeated postnatal subjection to NMDA-triggered IS. Rats with spasms were treated with ACTH, PMX53 or saline. Since ACTH, the first line treatment for IS, has inconsistent efficacy and potential harsh side effects, PMX53, a potent complement C5ar1 antagonist, was suggested as a therapeutic alternative given its effects in other epilepsy models. Novel measures that consider all genes and are not affected by arbitrary cut-offs were used, in addition to standard statistical tests, to quantify regulation and recovery of glutamatergic, GABAergic, cholinergic, dopaminergic and serotonergic pathways. Although IS alters expression of ~30% of the ARC genes in both sexes the transcriptomic effects are 3x more severe in males than their female counterparts, as indicated by the Weighted Pathway Regulation measure. Both treatments significantly restored the ARC neurotransmission transcriptome to the non-IS condition with PMX53 performing slightly better, as measured by the Pathway Restoration Efficiency, suggesting these treatments may reduce autistic traits often associated with IS

    GABAergic Neuron Deficit As An Idiopathic Generalized Epilepsy Mechanism: The Role Of BRD2 Haploinsufficiency In Juvenile Myoclonic Epilepsy

    Get PDF
    Idiopathic generalized epilepsy (IGE) syndromes represent about 30% of all epilepsies. They have strong, but elusive, genetic components and sex-specific seizure expression. Multiple linkage and population association studies have connected the bromodomain-containing gene BRD2 to forms of IGE. In mice, a null mutation at the homologous Brd2 locus results in embryonic lethality while heterozygous Brd2+/− mice are viable and overtly normal. However, using the flurothyl model, we now show, that compared to the Brd2+/+ littermates, Brd2+/− males have a decreased clonic, and females a decreased tonic-clonic, seizure threshold. Additionally, long-term EEG/video recordings captured spontaneous seizures in three out of five recorded Brd2+/− female mice. Anatomical analysis of specific regions of the brain further revealed significant differences in Brd2+/− vs +/+ mice. Specifically, there were decreases in the numbers of GABAergic (parvalbumin- or GAD67-immunopositive) neurons along the basal ganglia pathway, i.e., in the neocortex and striatum of Brd2+/− mice, compared to Brd2+/+ mice. There were also fewer GABAergic neurons in the substantia nigra reticulata (SNR), yet there was a minor, possibly compensatory increase in the GABA producing enzyme GAD67 in these SNR cells. Further, GAD67 expression in the superior colliculus and ventral medial thalamic nucleus, the main SNR outputs, was significantly decreased in Brd2+/− mice, further supporting GABA downregulation. Our data show that the non-channel-encoding, developmentally critical Brd2 gene is associated with i) sex-specific increases in seizure susceptibility, ii) the development of spontaneous seizures, and iii) seizure-related anatomical changes in the GABA system, supporting BRD2's involvement in human IGE

    Epileptic Spasms in Infancy: Transferring Rat Prenatal Betamethasone-Postnatal NMDA Model to Mice

    No full text
    Epileptic spasms during infancy represent a devastating and refractory epilepsy syndrome. To advance studies on mechanisms and treatment using available mouse mutant models, we transferred our validated rat model of epileptic spasms to mice. Initially, we determined sensitivity of C57BL/6J mice to various doses (12-20 mg/kg) of NMDA on postnatal day 11 (P11) and P15. We primed mice with different doses of betamethasone (0.4-2.0 mg/kg) prenatally on gestational day (G)14 or G12 and tested spasms on P11. We also tested 2 different ACTH treatment paradigms (0.3 or 1.0 mg/kg) in prenatally primed as well as naïve mice. Data show that spasms in P11 mice, can be induced with the highest yield after 12 mg/kg dose of NMDA. Prenatal priming on G14 did not modify response to NMDA or sensitize spasms to ACTH. The betamethasone priming on G12 resulted in an increase in the number of NMDA-triggered spasms. Data indicate that the model transfer from rats to mice is non-linear and differences in prenatal brain development, metabolic rates, as well as sensitivity to convulsant drugs have to be considered

    ACTH and PMX53 recover synaptic transcriptome alterations in a rat model of infantile spasms

    Get PDF
    We profiled the gene expression in the hypothalamic arcuate nuclei (ARC) of 20 male and 20 female rats to determine the infantile spasms (IS) related transcriptomic alteration of neurotransmission and recovery following two treatments. Rats were prenatally exposed to betamethasone or saline followed by repeated postnatal subjection to NMDA-triggered IS. Rats with spasms were treated with ACTH, PMX53 or saline. Since ACTH, the first line treatment for IS, has inconsistent efficacy and potential harsh side effects, PMX53, a potent complement C5ar1 antagonist, was suggested as a therapeutic alternative given its effects in other epilepsy models. Novel measures that consider all genes and are not affected by arbitrary cut-offs were used, in addition to standard statistical tests, to quantify regulation and recovery of glutamatergic, GABAergic, cholinergic, dopaminergic and serotonergic pathways. Although IS alters expression of ~30% of the ARC genes in both sexes the transcriptomic effects are 3× more severe in males than their female counterparts, as indicated by the Weighted Pathway Regulation measure. Both treatments significantly restored the ARC neurotransmission transcriptome to the non-IS condition with PMX53 performing slightly better, as measured by the Pathway Restoration Efficiency, suggesting these treatments may reduce autistic traits often associated with IS

    Susceptibility of <i>Brd2</i> heterozygous KO mice (<i>+/-</i>) and control littermates (+/+) to flurothyl-induced seizures.

    No full text
    <p>Seizure threshold is depicted in µl of flurothyl necessary to induce specific seizure type (Mean±S.E.M.). (A) In females, tonic-clonic seizures in <i>Brd2+/-</i> mice had significantly lower threshold than in <i>Brd2+/+</i> littermate controls. (B) In males, clonic seizures in <i>Brd2+/−</i> mice had significantly lower threshold than in <i>Brd2+/+</i> littermate controls.</p

    Combined EEG/videorecordings of spontaneous seizures in <i>Brd2+/−</i> mice.

    No full text
    <p>(A) Scheme of head mounted electrodes with one reference (REF) in the nasal bone, one common ground in the occipital area, and active electrodes in the left and right frontal area (LF, RF, respectively) and in both occipital areas (BiO). (B) EEG recordings of interictal discharges (one indicated by an arrow) in a <i>Brd2+/−</i> mouse associated with myoclonic jerks (twitches of body musculature). (C) EEG recordings from the same mouse showing a long EEG seizure consisting of spike-and-wave pattern. Onset of seizure is marked by an arrowhead. (D) EEG recordings of spindle-shaped sharp wave episodes associated with behavioral freezing in another <i>Brd2+/−</i> mouse. Onset of two spindles (about 3 s and 1 s long) is marked by arrowheads. (E) Frozen video frames (under infrared lighting) showing onset of a violent clonic seizure (E1) in a <i>Brd2+/−</i> mouse and the end of status epilepticus (after more than an hour of clonic seizures) in the same mouse (E2).</p
    corecore