912 research outputs found

    Long-Range GABAergic Connections Distributed throughout the Neocortex and their Possible Function

    Get PDF
    Features and functions of long-range GABAergic projection neurons in the developing cerebral cortex have been reported previously, although until now their significance in the adult cerebral cortex has remained uncertain. The septo-hippocampal circuit is one exception – in this system, long-range mature GABAergic projection neurons have been well analyzed and their contribution to the generation of theta-oscillatory behavior in the hippocampus has been documented. To have a clue to the function of the GABAergic projection neurons in the neocortex, we view how the long-range GABAergic projections are integrated in the cortico-cortical, cortico-fugal, and afferent projections in the cerebral cortex. Then, we consider the possibility that the GABAergic projection neurons are involved in the generation, modification, and/or synchronization of oscillations in mature neocortical neuron activity. When markers that identify the GABAergic projection neurons are examined in anatomical and developmental studies, it is clear that neuronal NO synthetase (nNOS)-immunoreactivity can readily identify GABAergic projection neurons. GABAergic projection neurons account for 0.5% of the neocortical GABAergic neurons. To elucidate the role of the GABAergic projection neurons in the neocortex, it will be necessary to clarify the network constructed by nNOS-positive GABAergic projection neurons and their postsynaptic targets. Thus, our long-range goals will be to label and manipulate (including deleting) the GABAergic projection neurons using genetic tools driven by a nNOS promoter. We recognize that this may be a complex endeavor, as most excitatory neurons in the murine neocortex express nNOS transiently. Nevertheless, additional studies characterizing long-range GABAergic projection neurons will have great value to the overall understanding of mature cortical function

    Subtypes of GABAergic Neurons Project Axons in the Neocortex

    Get PDF
    γ-aminobutyric acid (GABA)ergic neurons in the neocortex have been regarded as interneurons and speculated to modulate the activity of neurons locally. Recently, however, several experiments revealed that neuronal nitric oxide synthase (nNOS)-positive GABAergic neurons project cortico-cortically with long axons. In this study, we illustrate Golgi-like images of the nNOS-positive GABAergic neurons using a nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) reaction and follow the emanating axon branches in cat brain sections. These axon branches projected cortico-cortically with other non-labeled arcuate fibers, contra-laterally via the corpus callosum and anterior commissure. The labeled fibers were not limited to the neocortex but found also in the fimbria of the hippocampus. In order to have additional information on these GABAergic neuron projections, we investigated green fluorescent protein (GFP)-labeled GABAergic neurons in GAD67-Cre knock-in/GFP Cre-reporter mice. GFP-labeled axons emanate densely, especially in the fimbria, a small number in the anterior commissure, and very sparsely in the corpus callosum. These two different approaches confirm that not only nNOS-positive GABAergic neurons but also other subtypes of GABAergic neurons project long axons in the cerebral cortex and are in a position to be involved in information processing

    Altered proliferative ability of neuronal progenitors in PlexinA1 mutant mice

    Get PDF
    Cortical interneurons are generated predominantly in the medial ganglionic eminence (MGE) and migrate through the ventral and dorsal telencephalon before taking their final positions within the developing cortical plate. Previously we demonstrated that interneurons from Robo1 knockout (Robo1(-/-) ) mice contain reduced levels of neuropilin 1 (Nrp1) and PlexinA1 receptors, rendering them less responsive to the chemorepulsive actions of semaphorin ligands expressed in the striatum and affecting their course of migration (Hernandez-Miranda et al. [2011] J. Neurosci. 31:6174-6187). Earlier studies have highlighted the importance of Nrp1 and Nrp2 in interneuron migration, and here we assess the role of PlexinA1 in this process. We observed significantly fewer cells expressing the interneuron markers Gad67 and Lhx6 in the cortex of PlexinA1(-/-) mice compared with wild-type littermates at E14.5 and E18.5. Although the level of apoptosis was similar in the mutant and control forebrain, proliferation was significantly reduced in the former. Furthermore, progenitor cells in the MGE of PlexinA1(-/-) mice appeared to be poorly anchored to the ventricular surface and showed reduced adhesive properties, which may account for the observed reduction in proliferation. Together our data uncover a novel role for PlexinA1 in forebrain development. J. Comp. Neurol., 2015. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc

    Expression of Hex mRNA in early murine postimplantation embryo development

    Get PDF
    AbstractThe onset of Hex expression and its role in early murine development was analyzed using in situ hybridization. Hex mRNA was first detected in the chorion of the ectoplacental cavity and weakly at the visceral endoderm of the future yolk sac at embryonic age (E) 7.5. Expression in embryonic tissues was detected exclusively in the hepatic anlage and thyroid primordium at E 9.5. At E 12.5 and E 15.5, Hex expression persisted in the fetal liver and thyroid, and was also detected in the fetal lung. These results suggest that Hex has its role in differentiation and/or organogenesis of several embryonic tissues

    GABAergic neurons regulate lateral ventricular development via transcription factor Pax5

    Get PDF
    Postmortem studies have revealed a downregulation of the transcription factor Pax5 in GABAergic neurons in bipolar disorder, a neurodevelopmental disorder, raising the question whether Pax5 in GABAergic neurons has a role in normal brain development. In a genetic approach to study functions of Pax5 in GABAergic neurons, Pax5 was specifically deleted in GABAergic neurons from Pax5 floxed mice using a novel Gad1-Cre transgenic mouse line expressing Cre recombinase in Gad1-positive, i.e. GABAergic neurons. Surprisingly, these mice developed a marked enlargement of the lateral ventricles at approximately seven weeks of age, which was lethal within 1–2 weeks of its appearance. This hydrocephalus phenotype was observed in mice homozygous or heterozygous for the Pax5 conditional knockout, with a gene dosage-dependent penetrance. By QTL (quantitative trait loci) mapping, a 3.5 Mb segment on mouse chromosome 4 flanked by markers D4Mit237 and D4Mit214 containing approximately 92 genes including Pax5 has previously been linked to differences in lateral ventricular size. Our findings are consistent with Pax5 being a relevant gene underlying this QTL phenotype and demonstrate that Pax5 in GABAergic neurons is essential for normal ventricular development

    Cortical GABAergic Neurons: Stretching it Remarks, Main Conclusions and Discussion

    Get PDF
    18 p., 1 figure and references.The articles in this Special Topic cover a range of issues concerning long-distance projecting cortical GABAergic neurons, in the context of interneuron diversity. As several authors report, these neurons are attracting renewed attention spurred by new techniques and markers which show great potential for deciphering their role in cortical organization and microcircuitry. Other authors have emphasized developmental origins of particular subpopulations and their roles in early cortical circuitry. Notable recurring themes are species-specifi c features and probable implications for normal and pathological cortical functioning. A corollary theme, evident in many of these articles, concerns nomenclature. Several terms are almost interchangeably used, but nevertheless distinct; that is: subplate, layer 7, layer VIB, pioneer and interstitial neuron (see comments to follow Clancy et al., below, among others). In this article the main conclusions, and some of what the host editors (Kathleen Rockland and Javier DeFelipe) consider the most interesting remarks, have been extracted from each of the individual articles. These commentaries are not necessarily directly derived from the original work of the authors, and may be the result of the collective work of several different laboratories. This is followed by a section dedicated to more general comments and a discussion of the issues raised. The authors who have participated in this article are listed in alphabetical order.Peer reviewe

    System-Wide Immunohistochemical Analysis of Protein Co-Localization

    Get PDF
    Background: The analysis of co-localized protein expression in a tissue section is often conducted with immunofluorescence histochemical staining which is typically visualized in localized regions. On the other hand, chromogenic immunohistochemical staining, in general, is not suitable for the detection of protein co-localization. Here, we developed a new protocol, based on chromogenic immunohistochemical stain, for system-wide detection of protein co-localization and differential expression. Methodology/Principal Findings: In combination with a removable chromogenic stain, an efficient antibody stripping method was developed to enable sequential immunostaining with different primary antibodies regardless of antibody’s host species. Sections were scanned after each staining, and the images were superimposed together for the detection of protein co-localization and differential expression. As a proof of principle, differential expression and co-localization of glutamic acid decarboxylase67 (GAD67) and parvalbumin proteins was examined in mouse cortex. Conclusions/Significance: All parvalbumin-containing neurons express GAD67 protein, and GAD67-positive neurons that do not express parvalbumin were readily visualized from thousands of other neurons across mouse cortex. The method provided a global view of protein co-localization as well as differential expression across an entire tissue section. Repeate

    The cellular and synaptic architecture of the mechanosensory dorsal horn

    Get PDF
    The deep dorsal horn is a poorly characterized spinal cord region implicated in processing low-threshold mechanoreceptor (LTMR) information. We report an array of mouse genetic tools for defining neuronal components and functions of the dorsal horn LTMR-recipient zone (LTMR-RZ), a role for LTMR-RZ processing in tactile perception, and the basic logic of LTMR-RZ organization. We found an unexpectedly high degree of neuronal diversity in the LTMR-RZ: seven excitatory and four inhibitory subtypes of interneurons exhibiting unique morphological, physiological, and synaptic properties. Remarkably, LTMRs form synapses on between four and 11 LTMR-RZ interneuron subtypes, while each LTMR-RZ interneuron subtype samples inputs from at least one to three LTMR classes, as well as spinal cord interneurons and corticospinal neurons. Thus, the LTMR-RZ is a somatosensory processing region endowed with a neuronal complexity that rivals the retina and functions to pattern the activity of ascending touch pathways that underlie tactile perception
    corecore