14,781 research outputs found
Integrability of a Generalized Ito System: the Painleve Test
It is shown that a generalized Ito system of four coupled nonlinear evolution
equations passes the Painleve test for integrability in five distinct cases, of
which two were introduced recently by Tam, Hu and Wang. A conjecture is
formulated on integrability of a vector generalization of the Ito system.Comment: LaTeX, 5 page
Towards the production of radiotherapy treatment shells on 3D printers using data derived from DICOM CT and MRI: preclinical feasibility studies
Background: Immobilisation for patients undergoing brain or head and neck radiotherapy is achieved using perspex or thermoplastic devices that require direct moulding to patient anatomy. The mould room visit can be distressing for patients and the shells do not always fit perfectly. In addition the mould room process can be time consuming. With recent developments in three-dimensional (3D) printing technologies comes the potential to generate a treatment shell directly from a computer model of a patient. Typically, a patient requiring radiotherapy treatment will have had a computed tomography (CT) scan and if a computer model of a shell could be obtained directly from the CT data it would reduce patient distress, reduce visits, obtain a close fitting shell and possibly enable the patient to start their radiotherapy treatment more quickly. Purpose: This paper focuses on the first stage of generating the front part of the shell and investigates the dosimetric properties of the materials to show the feasibility of 3D printer materials for the production of a radiotherapy treatment shell. Materials and methods: Computer algorithms are used to segment the surface of the patient’s head from CT and MRI datasets. After segmentation approaches are used to construct a 3D model suitable for printing on a 3D printer. To ensure that 3D printing is feasible the properties of a set of 3D printing materials are tested. Conclusions: The majority of the possible candidate 3D printing materials tested result in very similar attenuation of a therapeutic radiotherapy beam as the Orfit soft-drape masks currently in use in many UK radiotherapy centres. The costs involved in 3D printing are reducing and the applications to medicine are becoming more widely adopted. In this paper we show that 3D printing of bespoke radiotherapy masks is feasible and warrants further investigation
A Survey of 56 Mid-latitude EGRET Error Boxes for Radio Pulsars
We have conducted a radio pulsar survey of 56 unidentified gamma-ray sources
from the 3rd EGRET catalog which are at intermediate Galactic latitudes (5 deg.
< |b| < 73 deg.). For each source, four interleaved 35-minute pointings were
made with the 13-beam, 1400-MHz multibeam receiver on the Parkes 64-m radio
telescope. This covered the 95% error box of each source at a limiting
sensitivity of about 0.2 mJy to pulsed radio emission for periods P > 10 ms and
dispersion measures < 50 pc cm-3. Roughly half of the unidentified gamma-ray
sources at |b| > 5 deg. with no proposed active galactic nucleus counterpart
were covered in this survey. We detected nine isolated pulsars and four
recycled binary pulsars, with three from each class being new. Timing
observations suggest that only one of the pulsars has a spin-down luminosity
which is even marginally consistent with the inferred luminosity of its
coincident EGRET source. Our results suggest that population models, which
include the Gould belt as a component, overestimate the number of isolated
pulsars among the mid-latitude Galactic gamma-ray sources and that it is
unlikely that Gould belt pulsars make up the majority of these sources.
However, the possibility of steep pulsar radio spectra and the confusion of
terrestrial radio interference with long-period pulsars (P > 200 ms) having
very low dispersion measures (< 10 pc cm-3, expected for sources at a distance
of less than about 1 kpc) prevent us from strongly ruling out this hypothesis.
Our results also do not support the hypothesis that millisecond pulsars make up
the majority of these sources. Non-pulsar source classes should therefore be
further investigated as possible counterparts to the unidentified EGRET sources
at intermediate Galactic latitudes.Comment: 24 pages, including 4 figures and 3 tables. Accepted for publication
in Ap
Metal-Insulator-Transition in a Weakly interacting Disordered Electron System
The interplay of interactions and disorder is studied using the
Anderson-Hubbard model within the typical medium dynamical cluster
approximation. Treating the interacting, non-local cluster self-energy
() up to second order in the
perturbation expansion of interactions, , with a systematic incorporation
of non-local spatial correlations and diagonal disorder, we explore the initial
effects of electron interactions () in three dimensions. We find that the
critical disorder strength (), required to localize all states,
increases with increasing ; implying that the metallic phase is stabilized
by interactions. Using our results, we predict a soft pseudogap at the
intermediate close to and demonstrate that the mobility edge
() is preserved as long as the chemical potential, , is
at or beyond the mobility edge energy.Comment: 10 Pages, 8 Figures with Supplementary materials include
Finite Cluster Typical Medium Theory for Disordered Electronic Systems
We use the recently developed typical medium dynamical cluster (TMDCA)
approach~[Ekuma \etal,~\textit{Phys. Rev. B \textbf{89}, 081107 (2014)}] to
perform a detailed study of the Anderson localization transition in three
dimensions for the Box, Gaussian, Lorentzian, and Binary disorder
distributions, and benchmark them with exact numerical results. Utilizing the
nonlocal hybridization function and the momentum resolved typical spectra to
characterize the localization transition in three dimensions, we demonstrate
the importance of both spatial correlations and a typical environment for the
proper characterization of the localization transition in all the disorder
distributions studied. As a function of increasing cluster size, the TMDCA
systematically recovers the re-entrance behavior of the mobility edge for
disorder distributions with finite variance, obtaining the correct critical
disorder strengths, and shows that the order parameter critical exponent for
the Anderson localization transition is universal. The TMDCA is computationally
efficient, requiring only a small cluster to obtain qualitative and
quantitative data in good agreement with numerical exact results at a fraction
of the computational cost. Our results demonstrate that the TMDCA provides a
consistent and systematic description of the Anderson localization transition.Comment: 20 Pages, 19 Figures, 3 Table
Critical property of spin-glass transition in a bond-disordered classical antiferromagnetic Heisenberg model with a biquadratic interaction
Motivated by puzzling spin-glass behaviors observed in many pyrochlore-based
magnets, effects of magnetoelastic coupling to local lattice distortions were
recently studied by the authors for a bond-disordered antiferromagnet on a
pyrochlore lattice [Phys. Rev. Lett. 107, 047204 (2011)]. Here, we extend the
analyses with focusing on the critical property of the spin-glass transition
which occurs concomitantly with a nematic transition. Finite-size scaling
analyses are performed up to a larger system size with 8192 spins to estimate
the transition temperature and critical exponents. The exponents are compared
with those in the absence of the magnetoelastic coupling and with those for the
canonical spin-glass systems. We also discuss the temperature dependence of the
specific heat in comparison with that in canonical spin-glass systems as well
as an experimental result.Comment: 4 pages, 2 figures, proceedings for LT2
Vortices and the entrainment transition in the 2D Kuramoto model
We study synchronization in the two-dimensional lattice of coupled phase
oscillators with random intrinsic frequencies. When the coupling is larger
than a threshold , there is a macroscopic cluster of
frequency-synchronized oscillators. We explain why the macroscopic cluster
disappears at . We view the system in terms of vortices, since cluster
boundaries are delineated by the motion of these topological defects. In the
entrained phase (), vortices move in fixed paths around clusters, while
in the unentrained phase (), vortices sometimes wander off. These
deviant vortices are responsible for the disappearance of the macroscopic
cluster. The regularity of vortex motion is determined by whether clusters
behave as single effective oscillators. The unentrained phase is also
characterized by time-dependent cluster structure and the presence of chaos.
Thus, the entrainment transition is actually an order-chaos transition. We
present an analytical argument for the scaling for small
lattices, where is the threshold for phase-locking. By also deriving the
scaling , we thus show that for small , in
agreement with numerics. In addition, we show how to use the linearized model
to predict where vortices are generated.Comment: 11 pages, 8 figure
- …