10 research outputs found

    Development of a Novel Space Flight Plan to Monitor Female Mice Fertility Using Reduced Crew Time

    Get PDF
    Ovarian estrogen impacts the normal homeostatic and metabolic processes of all tissues and organ systems within the body: particularly, but not limited to canonical space-flight impacted systems: bone, muscle, immune, wound repair, and cardiovascular. Effects of space flight on the ovarian estrogen production are therefore critical to our understanding of all space flight experiments using female mice, the current paradigm being used on the International Space Station (ISS). Recently, we demonstrated that vaginal wall histology could be used to determine the stage of the estrous cycle in female mice at the time of sacrifice in space. Moreover, this robust technique was completed following two post-flight freezethaw procedures of the carcasses (RR1 experiment). Thus, this technique represents a viable mechanism to determine the estrous cycle status of the female at the time of sacrifice and can be completed in a manner that does not impact primary experimental objectives. We propose that vaginal wall histology become a standard procedure completed on all mice sacrificed in space and that the individual estrous status of each animal be shared with all investigators. While evidence of estrous cyclicity was present in long-term (33 day) RR1 mice, fertility of female mice exposed to weightlessness remains unknown. In preparation for an upcoming funded NASA flight investigating the effects of long duration spaceflight on female fertility, we have refined our experimental design to minimize crew flight time and to accommodate the duration of Dragon capsule berth. These refinements maintain all our proposed primary and secondary experimental objectives. Briefly, in order to evaluate fertility, we will super ovulate mice using standard procedures (PMSG hCG), followed by collection of reproductive tract after follicular stimulation alone (PMSG) or following ovulation (hCG). Ovarian folliculogenesis and ovulation rate will be determined in fixed tissues following return in order to determine fertility. Ovarian and uterine tissues will also be evaluated by hormonal and gene expression profiling using quantitative approaches (radioimmunoassays, western blots, digital droplet PCR). Comparisons will be made to contemporary vivarium and Rodent Research Hardware Transporter and Habitat housed animals maintained on earth. Supported by NNX15AB48G to JST

    Estrous Cyclicity of Mice During Simulated Weightlessness

    Get PDF
    Hindlimb unloading (HU) is a rodent model system used to simulate weightlessness experienced in space. However, some effects of this approach on rodent physiology are under-studied, specifically the effects on ovarian estrogen production which drives the estrous cycle. To resolve this deficiency, we conducted a ground-based validation study using the HU model, while monitoring estrous cycles in 16-weeks-old female C57BL6 mice. Animals were exposed to HU for 12 days following a 3 day HU cage acclimation period, and estrous cycling was analyzed in HU animals (n22), normally loaded HU Cage Pair-Fed controls (CPF; n22), and Vivarium controls fed ad libitum (VIV; n10). Pair feeding was used to control for potential nutritional deficits on ovarian function. Vaginal cells were sampled daily in all mice via saline lavage. Cells were dried and stained with crystal violet, and the smears evaluated using established vaginal cytology techniques by two individuals blinded to the animal treatment group. Estrous cyclicity was disrupted in nearly all HU and CPF mice, while those maintained in VIV had an average normal cycle length of 4.8 0.5 days, with all stages in the cycle visibly observed. CPF and HU animals arrested in the diestrous phase, which precedes the pre-ovulatory estrogen surge. Additionally, infection-like symptoms characterized by vaginal discharge and swelling arose in several HU animals, which we suspect was due to an inability of these mice to properly groom themselves, andor due to the change in the gravity vector relative to the vaginal opening, which prevented drainage of the lavage solution. Pair-feeding resulted in similar weight gains of HU and CPF (1.5 vs 3.0, respectively). The current results indicate that pair-feeding controlled weight gain and that the HU cage alone influenced estrous cyclicity. Thus, longer acclimation needs to be tested to determine if and when normal estrous cycling resumes in non-loaded mice in HU cages prior to HU testing. Future studies might also examine whether modifications to the vaginal lavage procedure might prevent the onset of the infection-like symptoms, and allow estrous cyclicity to be measured in this model system

    Capsule carbohydrate structure determines virulence in Acinetobacter baumannii

    Get PDF
    Acinetobacter baumannii is a highly antibiotic-resistant bacterial pathogen for which novel therapeutic approaches are needed. Unfortunately, the drivers of virulence in A. baumannii remain uncertain. By comparing genomes among a panel of A. baumannii strains we identified a specific gene variation in the capsule locus that correlated with altered virulence. While less virulent strains possessed the intact gene gtr6, a hypervirulent clinical isolate contained a spontaneous transposon insertion in the same gene, resulting in the loss of a branchpoint in capsular carbohydrate structure. By constructing isogenic gtr6 mutants, we confirmed that gtr6-disrupted strains were protected from phagocytosis in vitro and displayed higher bacterial burden and lethality in vivo. Gtr6+ strains were phagocytized more readily and caused lower bacterial burden and no clinical illness in vivo. We found that the CR3 receptor mediated phagocytosis of gtr6+, but not gtr6-, strains in a complement-dependent manner. Furthermore, hypovirulent gtr6+ strains demonstrated increased virulence in vivo when CR3 function was abrogated. In summary, loss-of-function in a single capsule assembly gene dramatically altered virulence by inhibiting complement deposition and recognition by phagocytes across multiple A. baumannii strains. Thus, capsular structure can determine virulence among A. baumannii strains by altering bacterial interactions with host complement-mediated opsonophagocytosis

    Prenatal 2g Exposure Alters Placental Expression of Stress-Related Genes

    No full text
    Extra-terrestrial colonization is of growing interest to space agencies and private entities, emphasizing the importance of research on reproduction and development in the absence of Earth's 1G. Maternal stressors can modify offspring development, exerting significant lifespan and crossgenerational changes through prenatal programming. The space environment is stressful, therefore exposure to altered gravity during pregnancy may impact later life outcomes in offspring. In ground-based studies, we exposed pregnant rats to continuous +G (above Earth gravity), and observed overweight and elevated anxiety in adult male (but not female) offspring, common phenotypes associated with prenatal maternal stress. Here we hypothesize that exposure to increased gravity during pregnancy elicits changes in the expression of stress-related genes in placenta that may mediate emergence of later life outcomes. While the placenta transports maternal factors to the fetus and produces endogenous fetal hormones, stress-induced changes at the placental-uterine interface may also alter communication between mother and fetus, facilitating prenatal transmission of unfavorable later life outcomes and cross-generational epigenetic alterations. Maternal stress elevates maternal glucocorticoids however placental 11b-hydroxysteroid dehydrogenase type 2 (HSD11B2) buffers fetal exposure by converting cortisol/corticosterone into inactive metabolites. Maternal stress during pregnancy down-regulates this enzyme and can induce epigenetic changes in placental and fetal tissues accounting for heightened adult HPA reactivity. Past studies have shown a placenta-specific increase in DNA methyltransferase (DNMT3a) mRNA in stressed mothers, an effect with implications for genome-wide epigenetic changes that may account for diverse phenotypic outcomes following maternal stress. Here we exposed groups of pregnant rats to one of five gravity loads (1, 1.5, 1.75 and 2G) and analyzed placental samples during late gestation. We predicted a systematic dose-response relationship between gravity load and the expression of the HSD11B2 and DNMT3 genes, thereby linking maternal exposure to altered gravity during pregancy with maternal stress

    Functional assays to screen and select monoclonal antibodies that target Yersinia pestis

    No full text
    Yersinia pestis is a gram-negative bacterium that causes plague in animals and humans. Depending on the route of disease transmission, the bacterium can cause an acute, often fatal disease that has a narrow window for treatment with antibiotics. Additionally, antibiotic resistant strains have been identified, emphasizing the need for novel treatments. Antibody therapy is an appealing option that can direct the immune system to clear bacterial infections. Advances in biotechnology have made both engineering and producing antibodies easier and more affordable. In this study, two screening assays were optimized to evaluate the ability of antibodies to promote phagocytosis of Y. pestis by macrophages and to induce a cytokine signature in vitro that may be predictive of protection in vivo. We evaluated a panel of 21 mouse monoclonal antibodies targeting either the anti-phagocytic capsule F1 protein or the LcrV antigen, which is part of the type 3 secretion system that facilitates translocation of virulence factors into the host cell, using two functional assays. Anti-F1 and anti-LcrV monoclonal antibodies both increased bacterial uptake by macrophages, with greater uptake observed in the presence of antibodies that were protective in the mouse pneumonic plague model. In addition, the protective anti-F1 and anti-LcrV antibodies produced unique cytokine signatures that were also associated with in vivo protection. These antibody-dependent characteristics from in vitro functional assays will be useful in down-selecting efficacious novel antibodies that can be used for treatment of plague

    Sexual dimorphism during integrative endocrine and immune responses to ionizing radiation in mice

    No full text
    Abstract Exposure to cosmic ionizing radiation is an innate risk of the spaceflight environment that can cause DNA damage and altered cellular function. In astronauts, longitudinal monitoring of physiological systems and interactions between these systems are important to consider for mitigation strategies. In addition, assessments of sex-specific biological responses in the unique environment of spaceflight are vital to support future exploration missions that include both females and males. Here we assessed sex-specific, multi-system immune and endocrine responses to simulated cosmic radiation. For this, 24-week-old, male and female C57Bl/6J mice were exposed to simplified five-ion, space-relevant galactic cosmic ray (GCRsim) radiation at 15 and 50 cGy, to simulate predicted radiation exposures that would be experienced during lunar and Martian missions, respectively. Blood and adrenal tissues were collected at 3- and 14-days post-irradiation for analysis of immune and endocrine biosignatures and pathways. Sexually dimorphic adrenal gland weights and morphology, differential total RNA expression with corresponding gene ontology, and unique immune phenotypes were altered by GCRsim. In brief, this study offers new insights into sexually dimorphic immune and endocrine kinetics following simulated cosmic radiation exposure and highlights the necessity for personalized translational approaches for astronauts during exploration missions

    Table_2_Live attenuated vaccines and layered defense strategies to combat infections caused by nonencapsulated Yersinia pestis.xlsx

    No full text
    IntroductionPlague is an ancient disease caused by Yersinia pestis, a widely disseminated Tier 1 pathogen that poses significant public health and biothreat risks. The rapid course and high mortality of pneumonic plague limit the efficacy of antibiotic treatment and mandate the need for an effective, licensed, and readily available vaccine. New candidate vaccines are being developed; however, their efficacy in nonhuman primates, optimal vaccination schedule and immune response, duration of protection, and breadth of coverage against various virulent strains are inadequately understood. In the current work, we explored homologous and heterologous vaccination schemes using the sensitive BALB/c mouse models of bubonic and pneumonic plague challenged with Y. pestis strain C12. This strain, a derivative of the wild-type strain CO92, lacks the anti-phagocytic F1 capsule yet remains highly virulent. Protection against such nonencapsulated strains has been particularly elusive.MethodsWe tested the efficacy of live attenuated vaccine (LAV) derivatives of Y. pestis CO92 or C12 with a deletion of a type 3 secretion-associated gene (ΔyscN) or the pgm pigmentation locus, and they were cured of the pPst (PCP1) plasmid (CO92 pgm− pPst−). The LAVs were evaluated alone or accompanied by a dose of a protein subunit vaccine (rF1V or rV).ResultsThe most protective and immunogenic vaccination scheme, as tested under a variety of conditions in bubonic and pneumonic plague models, was heterologous vaccination with a LAV and the recombinant rF1V or rV protein subunit vaccine. Furthermore, in the heterologous scheme, different LAVs and subunit vaccines could be substituted, affording flexibility in vaccine component selection. We also evaluated a novel intervention strategy consisting of vaccination and post-exposure antibiotic treatment. The layering of vaccination with the LAVs and post-exposure treatment with streptomycin was synergistic, extending the time after the Y. pestis C12 challenge when treatment remained effective and affording a sparing of antibiotics.ConclusionThe current work defined effective and flexible vaccination and treatment interventions that successfully prevented lethal infection with virulent, nonencapsulated Y. pestis.</p

    Presentation_1_Live attenuated vaccines and layered defense strategies to combat infections caused by nonencapsulated Yersinia pestis.pptx

    No full text
    IntroductionPlague is an ancient disease caused by Yersinia pestis, a widely disseminated Tier 1 pathogen that poses significant public health and biothreat risks. The rapid course and high mortality of pneumonic plague limit the efficacy of antibiotic treatment and mandate the need for an effective, licensed, and readily available vaccine. New candidate vaccines are being developed; however, their efficacy in nonhuman primates, optimal vaccination schedule and immune response, duration of protection, and breadth of coverage against various virulent strains are inadequately understood. In the current work, we explored homologous and heterologous vaccination schemes using the sensitive BALB/c mouse models of bubonic and pneumonic plague challenged with Y. pestis strain C12. This strain, a derivative of the wild-type strain CO92, lacks the anti-phagocytic F1 capsule yet remains highly virulent. Protection against such nonencapsulated strains has been particularly elusive.MethodsWe tested the efficacy of live attenuated vaccine (LAV) derivatives of Y. pestis CO92 or C12 with a deletion of a type 3 secretion-associated gene (ΔyscN) or the pgm pigmentation locus, and they were cured of the pPst (PCP1) plasmid (CO92 pgm− pPst−). The LAVs were evaluated alone or accompanied by a dose of a protein subunit vaccine (rF1V or rV).ResultsThe most protective and immunogenic vaccination scheme, as tested under a variety of conditions in bubonic and pneumonic plague models, was heterologous vaccination with a LAV and the recombinant rF1V or rV protein subunit vaccine. Furthermore, in the heterologous scheme, different LAVs and subunit vaccines could be substituted, affording flexibility in vaccine component selection. We also evaluated a novel intervention strategy consisting of vaccination and post-exposure antibiotic treatment. The layering of vaccination with the LAVs and post-exposure treatment with streptomycin was synergistic, extending the time after the Y. pestis C12 challenge when treatment remained effective and affording a sparing of antibiotics.ConclusionThe current work defined effective and flexible vaccination and treatment interventions that successfully prevented lethal infection with virulent, nonencapsulated Y. pestis.</p

    Table_1_Live attenuated vaccines and layered defense strategies to combat infections caused by nonencapsulated Yersinia pestis.xlsx

    No full text
    IntroductionPlague is an ancient disease caused by Yersinia pestis, a widely disseminated Tier 1 pathogen that poses significant public health and biothreat risks. The rapid course and high mortality of pneumonic plague limit the efficacy of antibiotic treatment and mandate the need for an effective, licensed, and readily available vaccine. New candidate vaccines are being developed; however, their efficacy in nonhuman primates, optimal vaccination schedule and immune response, duration of protection, and breadth of coverage against various virulent strains are inadequately understood. In the current work, we explored homologous and heterologous vaccination schemes using the sensitive BALB/c mouse models of bubonic and pneumonic plague challenged with Y. pestis strain C12. This strain, a derivative of the wild-type strain CO92, lacks the anti-phagocytic F1 capsule yet remains highly virulent. Protection against such nonencapsulated strains has been particularly elusive.MethodsWe tested the efficacy of live attenuated vaccine (LAV) derivatives of Y. pestis CO92 or C12 with a deletion of a type 3 secretion-associated gene (ΔyscN) or the pgm pigmentation locus, and they were cured of the pPst (PCP1) plasmid (CO92 pgm− pPst−). The LAVs were evaluated alone or accompanied by a dose of a protein subunit vaccine (rF1V or rV).ResultsThe most protective and immunogenic vaccination scheme, as tested under a variety of conditions in bubonic and pneumonic plague models, was heterologous vaccination with a LAV and the recombinant rF1V or rV protein subunit vaccine. Furthermore, in the heterologous scheme, different LAVs and subunit vaccines could be substituted, affording flexibility in vaccine component selection. We also evaluated a novel intervention strategy consisting of vaccination and post-exposure antibiotic treatment. The layering of vaccination with the LAVs and post-exposure treatment with streptomycin was synergistic, extending the time after the Y. pestis C12 challenge when treatment remained effective and affording a sparing of antibiotics.ConclusionThe current work defined effective and flexible vaccination and treatment interventions that successfully prevented lethal infection with virulent, nonencapsulated Y. pestis.</p
    corecore