86 research outputs found

    Acoustic transport of electrons in parallel quantum wires

    Get PDF
    Over the last few years we have developed a new method to control single-electrons by isolating and moving them through a submicron width channel formed in a GaAs/AlGaAs heterostructure using a surface acoustic wave. The acoustic wave acts to push electrons through the depleted submicron channel in packets each containing an integer number of electrons. Our primary motivation for studying this system has been to develop a new standard of dc current for metrological purposes, but our recent focus has widened to investigate the possibility of single-photon emission. Here we show new experimental results which demonstrate acoustoelectric current flow in adjacent 1D wires. These results have relevance both to the use of the system in a single-photon emission scheme, as well as in the creation of a proposed acoustoelectric quantum computer

    Surface Acoustic Wave Single-Electron Interferometry

    Full text link
    We propose an experiment to observe interference of a single electron as it is transported along two parallel quasi-one-dimensional channels trapped in a single minimum of a travelling periodic electric field. The experimental device is a modification of the surface acoustic wave (SAW) based quantum processor. Interference is achieved by creating a superposition of spatial wavefunctions between the two channels and inducing a relative phase shift via either a transverse electric field or a magnetic field. The interference can be used to estimate the decoherence time of an electron in this type of solid-state device

    Quantized adiabatic charge pumping and resonant transmission

    Full text link
    Adiabatically pumped charge, carried by non-interacting electrons through a quantum dot in a turnstile geometry, is studied as function of the strength of the two modulating potentials (related to the conductances of the two point-contacts to the leads) and of the phase shift between them. It is shown that the magnitude and sign of the pumped charge are determined by the relative position and orientation of the closed contour traversed by the system in the parameter plane, and the transmission peaks (or resonances) in that plane. Integer values (in units of the electronic charge ee) of the pumped charge (per modulation period) are achieved when a transmission peak falls inside the pumping contour. The integer value is given by the winding number of the pumping contour: double winding in the same direction gives a charge of 2, while winding around two opposite branches of the transmission peaks or winding in opposite directions can give a charge close to zero.Comment: 7 pages, 12 figure

    Charge Pumping in Carbon Nanotubes

    Get PDF
    We demonstrate charge pumping in semiconducting carbon nanotubes by a traveling potential wave. From the observation of pumping in the nanotube insulating state we deduce that transport occurs by packets of charge being carried along by the wave. By tuning the potential of a side gate, transport of either electron or hole packets can be realized. Prospects for the realization of nanotube based single-electron pumps are discussed

    AC Driven Jumps Distribution on a Periodic Substrate

    Full text link
    A driven Brownian particle (e.g. an adatom on a surface) diffusing on a low-viscosity, periodic substrate may execute multiple jumps. In the presence of an additional periodic drive, the jump lengths and time durations become statistically modulated according to a syncronyzation mechanism reminiscent of asymmetric stochastic resonance. Here, too, bistability plays a key role, but in a dynamical sense, inasmuch as a particle switches between locked and running states.Comment: 4 pages, 4 figures, RevTeX, to be published in Surface Science Letter

    Quantized charge transport through a static quantum dot using a surface acoustic wave

    Full text link
    We present a detailed study of the surface acoustic wave mediated quantized transport of electrons through a split gate device containing an impurity potential defined quantum dot within the split gate channel. A new regime of quantized transport is observed at low RF powers where the surface acoustic wave amplitude is comparable to the quantum dot charging energy. In this regime resonant transport through the single-electron dot state occurs which we interpret as turnstile-like operation in which the traveling wave amplitude modulates the entrance and exit barriers of the quantum dot in a cyclic fashion at GHz frequencies. For high RF powers, where the amplitude of the surface acoustic wave is much larger than the quantum dot energies, the quantized acoustoelectric current transport shows behavior consistent with previously reported results. However, in this regime, the number of quantized current plateaus observed and the plateau widths are determined by the properties of the quantum dot, demonstrating that the microscopic detail of the potential landscape in the split gate channel has a profound influence on the quantized acoustoelectric current transport.Comment: 9 page

    Quantized Adiabatic Charge Transport in a Carbon Nanotube

    Full text link
    The coupling of a metallic Carbon nanotube to a surface acoustic wave (SAW) is proposed as a vehicle to realize quantized adiabatic charge transport in a Luttinger liquid system. We demonstrate that electron backscattering by a periodic SAW potential, which results in miniband formation, can be achieved at energies near the Fermi level. Electron interaction, treated in a Luttinger liquid framework, is shown to enhance minigaps and thereby improve current quantization. Quantized SAW induced current, as a function of electron density, changes sign at half-filling.Comment: 5 pages, 2 figure

    Quantized charge pumping by surface acoustic waves in ballistic quasi-1D channels

    Full text link
    Adiabatic pumping of electrons induced by surface acoustic waves (SAWs) in a ballistic quasi-1D quantum channel is considered using an exactly solvable tight-binding model for non-interacting electrons. The single-electron degrees of freedom, responsible for acoustoelectric current quantization, are related to the transmission resonances. We study the influence of experimentally controllable parameters (SAW power, gate voltage, source-drain bias, amplitude and phase of a secondary SAW beam) on the plateau-like structure of the acoustoelectric current. The results are consistent with existing experimental observations.Comment: 11 pages, 8 figure

    Non-adiabaticity and single-electron transport driven by surface acoustic waves

    Full text link
    Single-electron transport driven by surface acoustic waves (SAW) through a narrow constriction, formed in two-dimensional electron gas, is studied theoretically. Due to long-range Coulomb interaction, the tunneling coupling between the electron gas and the moving minimum of the SAW-induced potential rapidly decays with time. As a result, nonadiabaticiy sets a limit for the accuracy of the quantization of acoustoelectric current
    corecore