35 research outputs found

    Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma

    Get PDF
    Alternative splicing of the Pkm gene product generates the PKM1 and PKM2 isoforms of pyruvate kinase (PK), and PKM2 expression is closely linked to embryogenesis, tissue regeneration, and cancer. To interrogate the functional requirement for PKM2 during development and tissue homeostasis, we generated germline PKM2-null mice (Pkm2[superscript βˆ’/βˆ’]). Unexpectedly, despite being the primary isoform expressed in most wild-type adult tissues, we found that Pkm2[superscript βˆ’/βˆ’] mice are viable and fertile. Thus, PKM2 is not required for embryonic or postnatal development. Loss of PKM2 leads to compensatory expression of PKM1 in the tissues that normally express PKM2. Strikingly, PKM2 loss leads to spontaneous development of hepatocellular carcinoma (HCC) with high penetrance that is accompanied by progressive changes in systemic metabolism characterized by altered systemic glucose homeostasis, inflammation, and hepatic steatosis. Therefore, in addition to its role in cancer metabolism, PKM2 plays a role in controlling systemic metabolic homeostasis and inflammation, thereby preventing HCC by a non-cell-autonomous mechanism.National Cancer Institute (U.S.) (Cancer Center Support Grant P30CA14051)Howard Hughes Medical InstituteBurroughs Wellcome FundSmith Family FoundationUnited States. Dept. of Health and Human Services (P01CA117969)United States. Dept. of Health and Human Services (R01CA168653)American Society for Engineering Education. National Defense Science and Engineering Graduate FellowshipJane Coffin Childs Memorial Fund for Medical Research (Postdoctoral Fellowship

    Quantitative proteomics identify Tenascin-C as a promoter of lung cancer progression and contributor to a signature prognostic of patient survival

    Get PDF
    The extracellular microenvironment is an integral component of normal and diseased tissues that is poorly understood owing to its complexity. To investigate the contribution of the microenvironment to lung fibrosis and adenocarcinoma progression, two pathologies characterized by excessive stromal expansion, we used mouse models to characterize the extracellular matrix (ECM) composition of normal lung, fibrotic lung, lung tumors, and metastases. Using quantitative proteomics, we identified and assayed the abundance of 113 ECM proteins, which revealed robust ECM protein signatures unique to fibrosis, primary tumors, or metastases. These analyses indicated significantly increased abundance of several S100 proteins, including Fibronectin and Tenascin-C (Tnc), in primary lung tumors and associated lymph node metastases compared with normal tissue. We further showed that Tnc expression is repressed by the transcription factor Nkx2-1, a well-established suppressor of metastatic progression. We found that increasing the levels of Tnc, via CRISPR-mediated transcriptional activation of the endogenous gene, enhanced the metastatic dissemination of lung adenocarcinoma cells. Interrogation of human cancer gene expression data revealed that high TNC expression correlates with worse prognosis for lung adenocarcinoma, and that a three-gene expression signature comprising TNC, S100A10, and S100A11 is a robust predictor of patient survival independent of age, sex, smoking history, and mutational load. Our findings suggest that the poorly understood ECM composition of the fibrotic and tumor microenvironment is an underexplored source of diagnostic markers and potential therapeutic targets for cancer patients

    Environmental Enrichment Preceding Early Adulthood Methylphenidate Treatment Leads to Long Term Increase of Corticosterone and Testosterone in the Rat

    Get PDF
    Attention-deficit/hyperactivity disorder (ADD/ADHD) has been emerging as a world-wide psychiatric disorder. There appears to be an increasing rate of stimulant drug abuse, specifically methylphenidate (MPH) which is the most common treatment for ADHD, among individuals who do not meet the criteria for ADHD and particularly for cognitive enhancement among university students. However, the long term effects of exposure to MPH are unknown. Thus, in light of a developmental approach in humans, we aimed to test the effects of adolescence exposure to enriched environment (EE) followed by MPH administration during early adulthood, on reactions to stress in adulthood. Specifically, at approximate adolescence [post natal days (PND) 30–60] rats were reared in EE and were treated with MPH during early adulthood (PND 60–90). Adult (PND 90–92) rats were exposed to mild stress and starting at PND 110, the behavioral and endocrine effects of the combined drug and environmental conditions were assessed. Following adolescence EE, long term exposure to MPH led to decreased locomotor activity and increased sucrose preference. EE had a beneficial effect on PPI (attentive abilities), which was impaired by long term exposure to MPH. Finally, the interaction between EE and, exposure to MPH led to long-term elevated corticosterone and testosterone levels. In view of the marked increase in MPH consumption over the past decade, vigilance is crucial in order to prevent potential drug abuse and its long term detrimental consequences

    RNF8 ubiquitylation of XRN2 facilitates R-loop resolution and restrains genomic instability in BRCA1 mutant cells

    Get PDF
    Breast cancer linked with BRCA1/2 mutations commonly recur and resist current therapies, including PARP inhibitors. Given the lack of effective targeted therapies for BRCA1-mutant cancers, we sought to identify novel targets to selectively kill these cancers. Here, we report that loss of RNF8 significantly protects Brca1-mutant mice against mammary tumorigenesis. RNF8 deficiency in human BRCA1-mutant breast cancer cells was found to promote R-loop accumulation and replication fork instability, leading to increased DNA damage, senescence, and synthetic lethality. Mechanistically, RNF8 interacts with XRN2, which is crucial for transcription termination and R-loop resolution. We report that RNF8 ubiquitylates XRN2 to facilitate its recruitment to R-loop-prone genomic loci and that RNF8 deficiency in BRCA1-mutant breast cancer cells decreases XRN2 occupancy at R-loop-prone sites, thereby promoting R-loop accumulation, transcription-replication collisions, excessive genomic instability, and cancer cell death. Collectively, our work identifies a synthetic lethal interaction between RNF8 and BRCA1, which is mediated by a pathological accumulation of R-loops

    DRIVERS OF VARIATION AMONG PEDIATRIC GASTROENTEROLOGISTS IN DIAGNOSIS AND MANAGEMENT OF EOSINOPHILIC ESOPHAGITIS

    No full text
    Thesis (Master's)--University of Washington, 2020Background and aims: Widespread variation in the diagnosis and treatment of eosinophilic esophagitis (EoE) has previously been reported among adult gastroenterologists; however, variation in EoE practice in pediatric populations is unknown. The study objective was to describe and understand reasons for variation in diagnosis and management of EoE among pediatric gastroenterologists following publication of the updated 2018 EoE guidelines. Methods: We developed and administered a 28-item survey to pediatric gastroenterologists via email using the PEDGI Bulletin Board from 03/2019-04/2019. The survey was developed using evidence-based review, expert validation, and cognitive interviews. Survey domains included respondent knowledge of and adherence to published guidelines, diagnostic and management approach and rationale, and participant demographics. Analysis included descriptive statistics and tests for association. Results: A total of 288 pediatric gastroenterologists completed the survey, most of whom practiced in an academic center (73%). More than half (63%) reported knowledge of the 2018 updated guidelines; however, only 52% agreed with them, and only 50% of the total respondents reported adherence. Participants who reported not agreeing with updated guidelines cited concerns regarding insufficient data (23%) increasing number of endoscopies (71%), and misdiagnosing eosinophilia from reflux (56%). Physicians cited that the most common drivers of decision-making with respect to therapy choice were patient/family preference, evidence/guidelines, and symptom burden. Conclusions: Many physicians are not adherent to current guidelines for reasons which include lack of knowledge of updated guidelines and concern regarding the strength of the supporting evidence. This study elucidates several areas to enhance education regarding these guidelines to promote widespread adherence

    A Review of Dietary Therapy for IBD and a Vision for the Future

    No full text
    Inflammatory bowel disease (IBD) is a chronic inflammatory condition affecting the gastrointestinal tract. The rising incidence of IBD has been associated with urbanization and shifts toward a Westernized diet. The intestinal microbiome has been a focus of disease pathogenesis and also therapeutic intervention. Dietary therapy for IBD has been well-studied with exclusive enteral nutrition, a formula-based diet with the exclusion of foods. In addition, interest in food-based exclusion diets has been increasing, with patients and families leading the charge. Challenges with dietary therapy for IBD include the lack of understanding of a detailed mechanistic pathway to explain the impact of diet on IBD pathogenesis and the difficult nature of designing and implementing dietary clinical trials. Epidemiological studies have demonstrated associations and intervention studies have demonstrated efficacy, but specific dietary targets remain as hypotheses at present. Current IBD therapy focuses on suppression of the immune system, yet the incomplete efficacy of present drugs suggests that other therapies must be developed and employed. Dietary interventions, with known ability to modulate the intestinal microbiome, are a unique opportunity to improve outcomes in IBD. Dietary intervention trials are challenging, and capturing both broad dietary patterns as well as exposure to individual food compounds is important. With increasing patient interest and preliminary research in dietary therapy indicating efficacy, it is imperative to further advance the science of utilizing diet in IBD, as well as to support patients by proactively addressing diet within their care plan

    Isoform-specific deletion of PKM2 constrains tumor initiation in a mouse model of soft tissue sarcoma

    No full text
    Background: Alternative splicing of the Pkm gene product generates the PKM1 and PKM2 isoforms of the glycolytic enzyme pyruvate kinase. PKM2 expression is associated with embryogenesis, tissue regeneration, and cancer. PKM2 is also the pyruvate kinase isoform expressed in most wild-type adult tissues, with PKM1 restricted primarily to skeletal muscle, heart, and brain. To interrogate the functional requirement for PKM2 during tumor initiation in an autochthonous mouse model for soft tissue sarcoma (STS), we used a conditional Pkm2 allele (Pkm2fl) to abolish PKM2 expression. Results: PKM2 deletion slowed tumor onset but did not abrogate eventual tumor outgrowth. PKM2-null sarcoma cells expressed PKM1 with tumors containing a high number of infiltrating PKM2 expressing stromal cells. End-stage PKM2-null tumors showed increased proliferation compared to tumors with a wild-type Pkm2 allele, and tumor metabolite analysis revealed metabolic changes associated with PKM2 loss. Conclusions: While PKM2 is not required for soft tissue sarcoma growth, PKM2 expression may facilitate initiation of this tumor type. Because these data differ from what has been observed in other cancer models where PKM2 has been deleted, they argue that the consequences of PKM2 loss during tumor initiation are dependent on the tumor type. Electronic supplementary material The online version of this article (10.1186/s40170-018-0179-2) contains supplementary material, which is available to authorized users

    Neuroprotective Effects of <i>Pulicaria incisa</i> Infusion on Human Neuroblastoma Cells and Hippocampal Neurons

    No full text
    Reactive oxygen species (ROS) and oxidative stress increase susceptibility to neurodegeneration and other age-related pathologies. We have previously demonstrated that an infusion prepared from Pulicaria incisa (Pi) has protective, anti-inflammatory, and antioxidative effects in glial cells. However, the neuroprotective activities of Pi infusion in cultured neurons and aging mice have never been studied. In the following study, the effects of Pi infusion were explored in a hydrogen peroxide (H2O2)-induced oxidative stress model in SH-SY5Y human neuroblastoma cells. Profiling of the infusion by gas chromatography–mass spectrometry identified chlorogenic acid, quercetin, and aucubin as some of its main constituents. H2O2-induced ROS accumulation and caspase 3 activity decreased SH-SY5Y viability and were prevented upon the pretreatment of cells with Pi infusion. Additionally, the Pi infusion upregulated cellular levels and the nuclear translocation of nuclear factor erythroid 2–related factor 2 (Nrf2) as well as the phosphorylation of cyclic AMP response element-binding protein (CREB). Aging mice treated daily for 18 months with Pi infusion exhibited reduced neuronal cell death in the hippocampus as compared to age-matched controls. We, therefore, propose Pi infusion as a candidate regulator of oxidative stress in the brain

    Systematic screens for proteins that interact with the mucolipidosis type IV protein TRPML1.

    Get PDF
    Mucolipidosis type IV is a lysosomal storage disorder resulting from mutations in the MCOLN1 gene, which encodes the endosomal/lysosomal Transient Receptor Potential channel protein mucolipin-1/TRPML1. Cells isolated from Mucolipidosis type IV patients and grown in vitro and in in vivo models of this disease both show several lysosome-associated defects. However, it is still unclear how TRPML1 regulates the transport steps implicated by these defects. Identifying proteins that associate with TRPML1 will facilitate the elucidation of its cellular and biochemical functions. We report here two saturation screens for proteins that interact with TRPML1: one that is based on immunoprecipitation/mass spectrometry and the other using a genetic yeast two-hybrid approach. From these screens, we identified largely non-overlapping proteins, which represent potential TRPML1-interactors., Using additional interaction assays on some of the potential interactors from each screen, we validated some proteins as candidate TRPML1 interactors In addition, our analysis indicates that each of the two screens not only identified some false-positive interactors, as expected from any screen, but also failed to uncover potential TRPML1 interactors. Future studies on the true interactors, first identified in these screens, will help elucidate the structure and function of protein complexes containing TRPML1
    corecore