24 research outputs found

    The Extreme Behavior of the Radio-loud Narrow-line Seyfert 1 Galaxy J0849+5108

    Get PDF
    Simultaneous radio, optical (both photometry and polarimetry), X-ray, and γ-ray observations of the radio-loud narrow-line Seyfert 1 (RL-NLSy1) galaxy J0849+5108 are presented. A massive three-magnitude optical flare across five nights in 2013 April is detected, along with associated flux increases in the γ-ray, infrared, and radio regimes; no comparable event was detected in the X-rays, though this may be due to poor coverage. A spectral energy distribution (SED) for the object using quasi-simultaneous data centered on the optical flare is compared to the previously published SEDs for the object by D'Ammando et al. The flare event coincided with a high degree of optical polarization. High amplitude optical microvariability is clearly detected, and is found to be of comparable amplitude when the object is observed in both faint and bright states. The object is also seen to undergo rapid shifts in polarization in both degree and electric vector position angle within a single night. J0849+5108 appears to show even more extreme variability than that previously reported for the similar object J0948+0022. These observations appear to support the growing claim that some RL-NLSy1 galaxies constitute a sub-class of blazar-like active galactic nuclei

    37 GHz observations of a large sample of BL Lacertae objects

    Full text link
    We present 37 GHz data obtained at Metsahovi Radio Observatory in 2001 December - 2005 April for a large sample of BL Lacertae objects. We also report the mean variability indices and radio spectral indices in frequency intervals 5 - 37 GHz and 37 - 90 GHz. Approximately 34 % of the sample was detected at 37 GHz, 136 BL Lacertae objects in all. A large majority of the detected sources were low-energy BL Lacs (LBLs). The variability index values of the sample were diverse, the mean fractional variability of the sample being \Delta S_2 = 0.31. The spectral indices also varied widely, but the average radio spectrum of the sample sources is flat. Our observations show that many of the high-energy BL Lacs (HBL), which are usually considered radio-quiet, can at times be detected at 37 GHz.Comment: 12 pages, 5 figures + 5 tables. Published in Astronomical Journa

    VLBA Observations of a Rare Multiple Quasar Imaging Event Caused by Refraction in the Interstellar Medium

    Get PDF
    Aims. We have investigated highly atypical morphological parsec-scale changes in the flat spectrum extragalactic radio source 2023+335 which are coincident with an extreme scattering event (ESE) seen at radio wavelengths during the first half of 2009. Methods. We used (i) 15.4 GHz Very Long Baseline Array (VLBA) observations of the quasar 2023+335 obtained at 14 epochs between July 2008 and Nov. 2012 as part of the Monitoring Of Jets in Active galactic nuclei with VLBA Experiments (MOJAVE) program; (ii) earlier archival VLBA observations of the source performed at 1.4, 2, 8, 15, 22, and 86 GHz to analyze the properties of the proposed turbulent screen toward 2023 + 335; and (iii) data sets from the Owens Valley Radio Observatory (OVRO) and University of Michigan Radio Astronomy Observatory (UMRAO) single-dish monitoring programs performed at 15 and 14.5 GHz, respectively, to study integrated flux density changes. Results. We report on the first detection of the theoretically-predicted rare phenomenon of multiple parsec-scale imaging of an active galactic nucleus induced by refractive effects due to localized foreground electron density enhancements, e.g., in an AU-scale plasma lens(es) in the ionized component of the Galactic interstellar medium. We detected multiple imaging in the low galactic latitude (b = -2.°4$) quasar 2023+335 from the 15.4 GHz MOJAVE observations when the source was undergoing an ESE. While the parsec-scale jet of the source normally extends along PA ~ −20°, in the 28 May 2009 and 23 July 2009 images a highly significant multi-component pattern of secondary images is stretched out nearly along the constant galactic latitude line with a local PA ≈ 40°, indicating that the direction of relative motion of the plasma lens is close to orbital. Weaker but still detectable imaging patterns at similar position angles are sporadically manifest at several other epochs. Modeling the ESE that occurred in early 2009 and lasted ~0.14 yr, we determined that the foreground screen has a double-lens structure, with proper motion (~6.8 mas yr-1), and angular size (~0.27 mas). We also found that the angular separation between the two brightest sub-images roughly follows a wavelength-squared dependence expected from plasma scattering. Furthermore, by analyzing archival non-simultaneous VLBA observations covering a wide frequency range from 1.4 to 86 GHz, we found that the scattered angular size of the VLBI core follows a ν-1.89 dependence, implying the presence of a turbulent, refractive dominated scattering screen that has a confined structure or is truncated transverse to the line of sight toward 2023+335

    Disk-Jet Connection in the Radio Galaxy 3C 120

    Get PDF
    We present the results of extensive multi-frequency monitoring of the radio galaxy 3C 120 between 2002 and 2007 at X-ray, optical, and radio wave bands, as well as imaging with the Very Long Baseline Array (VLBA). Over the 5 yr of observation, significant dips in the X-ray light curve are followed by ejections of bright superluminal knots in the VLBA images. Consistent with this, the X-ray flux and 37 GHz flux are anti-correlated with X-ray leading the radio variations. This implies that, in this radio galaxy, the radiative state of accretion disk plus corona system, where the X-rays are produced, has a direct effect on the events in the jet, where the radio emission originates. The X-ray power spectral density of 3C 120 shows a break, with steeper slope at shorter timescale and the break timescale is commensurate with the mass of the central black hole based on observations of Seyfert galaxies and black hole X-ray binaries. These findings provide support for the paradigm that black hole X-ray binaries and active galactic nuclei are fundamentally similar systems, with characteristic time and size scales linearly proportional to the mass of the central black hole. The X-ray and optical variations are strongly correlated in 3C 120, which implies that the optical emission in this object arises from the same general region as the X-rays, i.e., in the accretion disk-corona system. We numerically model multi-wavelength light curves of 3C 120 from such a system with the optical-UV emission produced in the disk and the X-rays generated by scattering of thermal photons by hot electrons in the corona. From the comparison of the temporal properties of the model light curves to that of the observed variability, we constrain the physical size of the corona and the distances of the emitting regions from the central BH.Comment: Accepted for publication in the Astrophysical Journal. 28 pages, 21 figures, 2 table

    Erratic Flaring of BL Lac in 2012-2013: Multiwavelength Observations

    Get PDF
    BL Lac, the eponymous blazar, flared to historically high levels at millimeter, infrared, X-ray, and gamma-ray wavelengths in 2012. We present observations made with Herschel, Swift, NuSTAR, Fermi, the Submillimeter Array, CARMA, and the VLBA in 2012–2013, including three months with nearly daily sampling at several wavebands. We have also conducted an intensive campaign of 30 hr with every-orbit observations by Swift and NuSTAR, accompanied by Herschel, and Fermi observations. The source was highly variable at all bands. Time lags, correlations between bands, and the changing shapes of the spectral energy distributions can be explained by synchrotron radiation and inverse Compton emission from nonthermal seed photons originating from within the jet. The passage of four new superluminal very long baseline interferometry knots through the core and two stationary knots about 4 pc downstream accompanied the high flaring in 2012–2013. The seed photons for inverse Compton scattering may arise from the stationary knots and from a Mach disk near the core where relatively slow-moving plasma generates intense nonthermal radiation. The 95 spectral energy distributions obtained on consecutive days form the most densely sampled, broad wavelength coverage for any blazar. The observed spectral energy distributions and multi-waveband light curves are similar to simulated spectral energy distributions and light curves generated with a model in which turbulent plasma crosses a conical shock with a Mach disk

    The Great Markarian 421 Flare of 2010 February: Multiwavelength Variability and Correlation Studies

    Get PDF
    We report on variability and correlation studies using multiwavelength observations of the blazar Mrk 421 during the month of 2010 February, when an extraordinary flare reaching a level of ∼27 Crab Units above 1 TeV was measured in very high energy (VHE) γ-rays with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) observatory. This is the highest flux state for Mrk 421 ever observed in VHE γ-rays. Data are analyzed from a coordinated campaign across multiple instruments, including VHE γ-ray (VERITAS, Major Atmospheric Gamma-ray Imaging Cherenkov), high-energy γ-ray (Fermi-LAT), X-ray (Swift, Rossi X-ray Timing Experiment, MAXI), optical (including the GASP-WEBT collaboration and polarization data), and radio (Metsahovi, Owens Valley Radio Observatory, University of Michigan Radio Astronomy Observatory). Light curves are produced spanning multiple days before and after the peak of the VHE flare, including over several flare "decline" epochs. The main flare statistics allow 2 minute time bins to be constructed in both the VHE and optical bands enabling a cross-correlation analysis that shows evidence for an optical lag of ∼25-55 minutes, the first time-lagged correlation between these bands reported on such short timescales. Limits on the Doppler factor (δ ⪆ 33) and the size of the emission region (δ-1RB≲ 3.8 × 1013cm) are obtained from the fast variability observed by VERITAS during the main flare. Analysis of 10 minute binned VHE and X-ray data over the decline epochs shows an extraordinary range of behavior in the flux-flux relationship, from linear to quadratic to lack of correlation to anticorrelation. Taken together, these detailed observations of an unprecedented flare seen in Mrk 421 are difficult to explain with the classic single-zone synchrotron self-Compton model

    The Great Markarian 421 Flare of 2010 February: Multiwavelength Variability and Correlation Studies

    Get PDF
    We report on variability and correlation studies using multiwavelength observations of the blazar Mrk 421 during the month of 2010 February, when an extraordinary flare reaching a level of ∼27 Crab Units above 1 TeV was measured in very high energy (VHE) γ-rays with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) observatory. This is the highest flux state for Mrk 421 ever observed in VHE γ-rays. Data are analyzed from a coordinated campaign across multiple instruments, including VHE γ-ray (VERITAS, Major Atmospheric Gamma-ray Imaging Cherenkov), high-energy γ-ray (Fermi-LAT), X-ray (Swift, Rossi X-ray Timing Experiment, MAXI), optical (including the GASP-WEBT collaboration and polarization data), and radio (Metsahovi, Owens Valley Radio Observatory, University of Michigan Radio Astronomy Observatory). Light curves are produced spanning multiple days before and after the peak of the VHE flare, including over several flare "decline" epochs. The main flare statistics allow 2 minute time bins to be constructed in both the VHE and optical bands enabling a cross-correlation analysis that shows evidence for an optical lag of ∼25-55 minutes, the first time-lagged correlation between these bands reported on such short timescales. Limits on the Doppler factor (δ ⪆ 33) and the size of the emission region (δ-1RB≲ 3.8 × 1013cm) are obtained from the fast variability observed by VERITAS during the main flare. Analysis of 10 minute binned VHE and X-ray data over the decline epochs shows an extraordinary range of behavior in the flux-flux relationship, from linear to quadratic to lack of correlation to anticorrelation. Taken together, these detailed observations of an unprecedented flare seen in Mrk 421 are difficult to explain with the classic single-zone synchrotron self-Compton model.</p
    corecore