508 research outputs found

    Presynaptic Type III Neuregulin1-ErbB signaling targets α7 nicotinic acetylcholine receptors to axons

    Get PDF
    Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of α7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface α7 nAChRs, which results from a redistribution of preexisting intracellular pools of α7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting α7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function

    Choral singing therapy following stroke or Parkinsons disease: An exploration of participants experiences

    Get PDF
    © 2015 Informa UK Ltd. Purpose: People with stroke or Parkinsons disease (PD) live with reduced mood, social participation and quality of life (QOL). Communication difficulties affect 90% of people with PD (dysarthria) and over 33% of people with stroke (aphasia). These consequences are disabling in many ways. However, as singing is typically still possible, its therapeutic use is of increasing interest. This article explores the experiences of and factors influencing participation in choral singing therapy (CST) by people with stroke or PD and their significant others. Method: Participants (eight people with stroke, six with PD) were recruited from a community music therapy choir running CST. Significant others (seven for stroke, two for PD) were also recruited. Supported communication methods were used as needed to undertake semi-structured interviews (total N = 23). Results: Thematic analysis indicated participants had many unmet needs associated with their condition, which motivated them to explore self-management options. CST participation was described as an enjoyable social activity, and participation was perceived as improving mood, language, breathing and voice. Conclusions: Choral singing was perceived by people with stroke and PD to help them self-manage some of the consequences of their condition, including social isolation, low mood and communication difficulties.Implications for RehabilitationChoral singing therapy (CST) is sought out by people with stroke and PD to help self-manage symptoms of their condition.Participation is perceived as an enjoyable activity which improves mood, voice and language symptoms.CST may enable access to specialist music therapy and speech language therapy protocols within community frameworks

    Effect of Carbonate Chemistry Alteration on the Early Embryonic Development of the Pacific Oyster (Crassostrea gigas)

    Get PDF
    Ocean acidification, due to anthropogenic CO2 absorption by the ocean, may have profound impacts on marine biota. Calcareous organisms are expected to be particularly sensitive due to the decreasing availability of carbonate ions driven by decreasing pH levels. Recently, some studies focused on the early life stages of mollusks that are supposedly more sensitive to environmental disturbances than adult stages. Although these studies have shown decreased growth rates and increased proportions of abnormal development under low pH conditions, they did not allow attribution to pH induced changes in physiology or changes due to a decrease in aragonite saturation state. This study aims to assess the impact of several carbonate-system perturbations on the growth of Pacific oyster (Crassostrea gigas) larvae during the first 3 days of development (until shelled D-veliger larvae). Seawater with five different chemistries was obtained by separately manipulating pH, total alkalinity and aragonite saturation state (calcium addition). Results showed that the developmental success and growth rates were not directly affected by changes in pH or aragonite saturation state but were highly correlated with the availability of carbonate ions. In contrast to previous studies, both developmental success into viable D-shaped larvae and growth rates were not significantly altered as long as carbonate ion concentrations were above aragonite saturation levels, but they strongly decreased below saturation levels. These results suggest that the mechanisms used by these organisms to regulate calcification rates are not efficient enough to compensate for the low availability of carbonate ions under corrosive conditions

    HLA-A2–Matched Peripheral Blood Mononuclear Cells From Type 1 Diabetic Patients, but Not Nondiabetic Donors, Transfer Insulitis to NOD-scid/γcnull/HLA-A2 Transgenic Mice Concurrent With the Expansion of Islet-Specific CD8+ T cells

    Get PDF
    OBJECTIVE: Type 1 diabetes is an autoimmune disease characterized by the destruction of insulin-producing beta-cells. NOD mice provide a useful tool for understanding disease pathogenesis and progression. Although much has been learned from studies with NOD mice, increased understanding of human type 1 diabetes can be gained by evaluating the pathogenic potential of human diabetogenic effector cells in vivo. Therefore, our objective in this study was to develop a small-animal model using human effector cells to study type 1 diabetes. RESEARCH DESIGN AND METHODS: We adoptively transferred HLA-A2-matched peripheral blood mononuclear cells (PBMCs) from type 1 diabetic patients and nondiabetic control subjects into transgenic NOD-scid/gammac(null)/HLA-A*0201 (NOD-scid/gammac(null)/A2) mice. At various times after adoptive transfer, we determined the ability of these mice to support the survival and proliferation of the human lymphoid cells. Human lymphocytes were isolated and assessed from the blood, spleen, pancreatic lymph node and islets of NOD-scid/gammac(null)/A2 mice after transfer. RESULTS: Human T and B cells proliferate and survive for at least 6 weeks and were recovered from the blood, spleen, draining pancreatic lymph node, and most importantly, islets of NOD-scid/gammac(null)/A2 mice. Lymphocytes from type 1 diabetic patients preferentially infiltrate the islets of NOD-scid/gammac(null)/A2 mice. In contrast, PBMCs from nondiabetic HLA-A2-matched donors showed significantly less islet infiltration. Moreover, in mice that received PBMCs from type 1 diabetic patients, we identified epitope-specific CD8(+) T cells among the islet infiltrates. CONCLUSIONS: We show that insulitis is transferred to NOD-scid/gammac(null)/A2 mice that received HLA-A2-matched PBMCs from type 1 diabetic patients. In addition, many of the infiltrating CD8(+) T cells are epitope-specific and produce interferon-gamma after in vitro peptide stimulation. This indicates that NOD-scid/gammac(null)/A2 mice transferred with HLA-A2-matched PBMCs from type 1 diabetic patients may serve as a useful tool for studying epitope-specific T-cell-mediated responses in patients with type 1 diabetes
    corecore