20 research outputs found

    Visual contrast sensitivity is associated with the presence of cerebral amyloid and tau deposition

    Get PDF
    Visual deficits are common in neurodegenerative diseases including Alzheimer’s disease. We sought to determine the association between visual contrast sensitivity and neuroimaging measures of Alzheimer’s disease-related pathophysiology, including cerebral amyloid and tau deposition and neurodegeneration. A total of 74 participants (7 Alzheimer’s disease, 16 mild cognitive impairment, 20 subjective cognitive decline, 31 cognitively normal older adults) underwent the frequency doubling technology 24-2 examination, a structural MRI scan and amyloid PET imaging for the assessment of visual contrast sensitivity. Of these participants, 46 participants (2 Alzheimer’s disease, 9 mild cognitive impairment, 12 subjective cognitive decline, 23 cognitively normal older adults) also underwent tau PET imaging with [18F]flortaucipir. The relationships between visual contrast sensitivity and cerebral amyloid and tau, as well as neurodegeneration, were assessed using partial Pearson correlations, covaried for age, sex and race and ethnicity. Voxel-wise associations were also evaluated for amyloid and tau. The ability of visual contrast sensitivity to predict amyloid and tau positivity were assessed using forward conditional logistic regression and receiver operating curve analysis. All analyses first were done in the full sample and then in the non-demented at-risk individuals (subjective cognitive decline and mild cognitive impairment) only. Significant associations between visual contrast sensitivity and regional amyloid and tau deposition were observed across the full sample and within subjective cognitive decline and mild cognitive impairment only. Voxel-wise analysis demonstrated strong associations of visual contrast sensitivity with amyloid and tau, primarily in temporal, parietal and occipital brain regions. Finally, visual contrast sensitivity accurately predicted amyloid and tau positivity. Alterations in visual contrast sensitivity were related to cerebral deposition of amyloid and tau, suggesting that this measure may be a good biomarker for detecting Alzheimer’s disease-related pathophysiology. Future studies in larger patient samples are needed, but these findings support the power of these measures of visual contrast sensitivity as a potential novel, inexpensive and easy-to-administer biomarker for Alzheimer’s disease-related pathology in older adults at risk for cognitive decline

    Volumetric comparison of hippocampal subfields extracted from 4-minute accelerated vs. 8-minute high-resolution T2-weighted 3T MRI scans

    Get PDF
    The hippocampus has been widely studied using neuroimaging, as it plays an important role in memory and learning. However, hippocampal subfield information is difficult to capture by standard magnetic resonance imaging (MRI) techniques. To facilitate morphometric study of hippocampal subfields, ADNI introduced a high resolution (0.4 mm in plane) T2-weighted turbo spin-echo sequence that requires 8 min. With acceleration, the protocol can be acquired in 4 min. We performed a comparative study of hippocampal subfield volumes using standard and accelerated protocols on a Siemens Prisma 3T MRI in an independent sample of older adults that included 10 cognitively normal controls, 9 individuals with subjective cognitive decline, 10 with mild cognitive impairment, and 6 with a clinical diagnosis of Alzheimer’s disease (AD). The Automatic Segmentation of Hippocampal Subfields (ASHS) software was used to segment 9 primary labeled regions including hippocampal subfields and neighboring cortical regions. Intraclass correlation coefficients were computed for reliability tests between 4 and 8 min scans within and across the four groups. Pairwise group analyses were performed, covaried for age, sex and total intracranial volume, to determine whether the patterns of group differences were similar using 4 vs. 8 min scans. The 4 and 8 min protocols, analyzed by ASHS segmentation, yielded similar volumetric estimates for hippocampal subfields as well as comparable patterns of differences between study groups. The accelerated protocol can provide reliable imaging data for investigation of hippocampal subfields in AD-related MRI studies and the decreased scan time may result in less vulnerability to motion

    Olfactory identification in subjective cognitive decline and mild cognitive impairment: Association with tau but not amyloid positron emission tomography

    Get PDF
    Introduction We investigated the association between olfactory identification and Alzheimer's disease biomarkers, including amyloid, tau, and neurodegeneration. Methods Thirty-four older adults, including 19 cognitively normal (CN), 10 subjective cognitive decline (SCD), and 5 mild cognitive impairment, underwent amyloid positron emission tomography, magnetic resonance imaging, and the University of Pennsylvania Smell Identification Test (UPSIT). Twenty-six also underwent tau positron emission tomography. Associations between the UPSIT and regionally sampled amyloid, tau, and temporal atrophy were evaluated. Voxel-wise regression models were also utilized. Analyses were conducted with the full sample and only CN/SCD. Results Lower UPSIT scores were associated with increased temporal and parietal tau burden in regional and voxel-wise analyses in the full sample and in CN and SCD only. Temporal lobe atrophy was associated with lower UPSIT score. Amyloid was not associated with the UPSIT. Discussion Impairment on the UPSIT may be a good marker for tau and neurodegeneration in preclinical or prodromal Alzheimer's disease

    [(11)C]PiB PET in Gerstmann-Sträussler-Scheinker disease

    Get PDF
    Gerstmann-Sträussler-Scheinker Disease (GSS) is a familial neurodegenerative disorder characterized clinically by ataxia, parkinsonism, and dementia, and neuropathologically by deposition of diffuse and amyloid plaques composed of prion protein (PrP). The purpose of this study was to evaluate if [(11)C]Pittsburgh Compound B (PiB) positron emission tomography (PET) is capable of detecting PrP-amyloid in PRNP gene carriers. Six individuals at risk for GSS and eight controls underwent [(11)C]PiB PET scans using standard methods. Approximately one year after the initial scan, each of the three asymptomatic carriers (two with PRNP P102L mutation, one with PRNP F198S mutation) underwent a second [(11)C]PiB PET scan. Three P102L carriers, one F198S carrier, and one non-carrier of the F198S mutation were cognitively normal, while one F198S carrier was cognitively impaired during the course of this study. No [(11)C]PiB uptake was observed in any subject at baseline or at follow-up. Neuropathologic study of the symptomatic individual revealed PrP-immunopositive plaques and tau-immunopositive neurofibrillary tangles in cerebral cortex, subcortical nuclei, and brainstem. PrP deposits were also numerous in the cerebellar cortex. This is the first study to investigate the ability of [(11)C]PiB PET to bind to PrP-amyloid in GSS F198S subjects. This finding suggests that [(11)C]PiB PET is not suitable for in vivo assessment of PrP-amyloid plaques in patients with GSS

    Cancer, Cognitive Impairment, and Work-Related Outcomes: An Integrative Review

    No full text
    Problem Identification: Cancer survivors often report concerns regarding their memory, attention, and ability to process information and make decisions. These problems, which have also been demonstrated on objective neuropsychological assessments, may have a significant impact on work-related outcomes.
 Literature Search: A literature review was conducted using the following electronic databases: Ovid (MEDLINE®), PubMed, CINAHL®, and Web of Science. Search terms included cancer, survivors, cognitive, work, and work ability. Empirical research published in English from January 2002 to August 2015 that focused on cognitive impairment in adult cancer survivors was included in the review.
 Data Evaluation: Articles were evaluated by two independent researchers.
 Synthesis: Twenty-six studies met the inclusion criteria. Ten were qualitative, 15 were quantitative, and 1 had a mixed-methods design. Quantitative articles were synthesized using the integrative methodology strategies proposed by Whittemore and Knafl. Synthesis of qualitative articles was conducted using the criteria established by the Swedish Agency for Health Technology Assessment and Assessment of Social Services. 
 Conclusions: To date, research in this context has been limited by cognitive assessments focusing primarily on patient self-assessments of attention, concentration, and memory. Additional research is needed to examine the impact of cognitive performance and to expand work-related outcomes measures to include perceived work ability, productivity, and actual performance.
 Implications for Nursing: Lack of information regarding cognitive impairment inhibits survivors’ ability to prepare, understand, and accept impending cognitive changes and how they may affect work ability. Oncology nurses can assist cancer survivors by preparing and educating them on how to better manage impairment associated with cancer and its treatment

    Detection of tau in Gerstmann-Sträussler-Scheinker disease (PRNP F198S) by [18F]Flortaucipir PET

    Get PDF
    Abstract This study aimed to determine the pattern of [18F]flortaucipir uptake in individuals affected by Gerstmann-Sträussler-Scheinker disease (GSS) associated with the PRNP F198S mutation. The aims were to: 1) determine the pattern of [18F]flortaucipir uptake in two GSS patients; 2) compare tau distribution by [18F]flortaucipir PET imaging among three groups: two GSS patients, two early onset Alzheimer’s disease patients (EOAD), two cognitively normal older adults (CN); 3) validate the PET imaging by comparing the pattern of [18F]flortaucipir uptake, in vivo, with that of tau neuropathology, post-mortem. Scans were processed to generate standardized uptake value ratio (SUVR) images. Regional [18F]flortaucipir SUVR was extracted and compared between GSS patients, EOADs, and CNs. Neuropathology and tau immunohistochemistry were carried out post-mortem on a GSS patient who died 9 months after the [18F]flortaucipir scan. The GSS patients were at different stages of disease progression. Patient A was mildly to moderately affected, suffering from cognitive, psychiatric, and ataxia symptoms. Patient B was moderately to severely affected, suffering from ataxia and parkinsonism accompanied by psychiatric and cognitive symptoms. The [18F]flortaucipir scans showed uptake in frontal, cingulate, and insular cortices, as well as in the striatum and thalamus. Uptake was greater in Patient B than in Patient A. Both GSS patients showed greater uptake in the striatum and thalamus than the EOADs and greater uptake in all evaluated regions than the CNs. Thioflavin S fluorescence and immunohistochemistry revealed that the anatomical distribution of tau pathology is consistent with that of [18F]flortaucipir uptake. In GSS patients, the neuroanatomical localization of pathologic tau, as detected by [18F]flortaucipir, suggests correlation with the psychiatric, motor, and cognitive symptoms. The topography of uptake in PRNP F198S GSS is strikingly different from that seen in AD. Further studies of the sensitivity, specificity, and anatomical patterns of tau PET in diseases with tau pathology are warranted

    White matter alterations in early-stage Alzheimer's disease: A tract-specific study

    Get PDF
    Introduction: Diffusion magnetic resonance imaging may allow for microscopic characterization of white matter degeneration in early stages of Alzheimer's disease. Methods: Multishell Diffusion magnetic resonance imaging data were acquired from 100 participants (40 cognitively normal, 38 with subjective cognitive decline, and 22 with mild cognitive impairment [MCI]). White matter microscopic degeneration in 27 major tracts of interest was assessed using diffusion tensor imaging (DTI), neurite orientation dispersion and density imaging, and q-space imaging. Results: Lower DTI fractional anisotropy and higher radial diffusivity were observed in the cingulum, thalamic radiation, and forceps major of participants with MCI. These tracts of interest also had the highest predictive power to discriminate groups. Diffusion metrics were associated with cognitive performance, particularly Rey Auditory Verbal Learning Test immediate recall, with the highest association observed in participants with MCI. Discussion: While DTI was the most sensitive, neurite orientation dispersion and density imaging and q-space imaging complementarily characterized reduced axonal density accompanied with dispersed and less restricted white matter microstructures

    Resting state network modularity along the prodromal late onset Alzheimer's disease continuum

    Get PDF
    Alzheimer's disease is considered a disconnection syndrome, motivating the use of brain network measures to detect changes in whole-brain resting state functional connectivity (FC). We investigated changes in FC within and among resting state networks (RSN) across four different stages in the Alzheimer's disease continuum. FC changes were examined in two independent cohorts of individuals (84 and 58 individuals, respectively) each comprising control, subjective cognitive decline, mild cognitive impairment and Alzheimer's dementia groups. For each participant, FC was computed as a matrix of Pearson correlations between pairs of time series from 278 gray matter brain regions. We determined significant differences in FC modular organization with two distinct approaches, network contingency analysis and multiresolution consensus clustering. Network contingency analysis identified RSN sub-blocks that differed significantly across clinical groups. Multiresolution consensus clustering identified differences in the stability of modules across multiple spatial scales. Significant modules were further tested for statistical association with memory and executive function cognitive domain scores. Across both analytic approaches and in both participant cohorts, the findings converged on a pattern of FC that varied systematically with diagnosis within the frontoparietal network (FP) and between the FP network and default mode network (DMN). Disturbances of modular organization were manifest as greater internal coherence of the FP network and stronger coupling between FP and DMN, resulting in less segregation of these two networks. Our findings suggest that the pattern of interactions within and between specific RSNs offers new insight into the functional disruption that occurs across the Alzheimer's disease spectrum
    corecore