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Abstract

The hippocampus has been widely studied using neuroimaging, as it plays an important role in 

memory and learning. However, hippocampal subfield information is difficult to capture by 

standard magnetic resonance imaging (MRI) techniques. To facilitate morphometric study of 

hippocampal subfields, ADNI introduced a high resolution (0.4mm in plane) T2-weighted turbo 

spin-echo sequence that requires 8 minutes. With acceleration, the protocol can be acquired in 4 

minutes. We performed a comparative study of hippocampal subfield volumes using standard and 

accelerated protocols on a Siemens Prisma 3T MRI in an independent sample of older adults that 

included 10 cognitively normal controls, 9 individuals with subjective cognitive decline, 10 with 

mild cognitive impairment, and 6 with a clinical diagnosis of Alzheimer’s disease (AD). The 

Automatic Segmentation of Hippocampal Subfields (ASHS) software was used to segment 9 

primary labeled regions including hippocampal subfields and neighboring cortical regions. 

Intraclass correlation coefficients were computed for reliability tests between 4 and 8 minute scans 

within and across the four groups. Pairwise group analyses were performed, covaried for age, sex 

and total intracranial volume, to determine whether the patterns of group differences were similar 

using 4 versus 8 minute scans. The 4 and 8 minute protocols, analyzed by ASHS segmentation, 

yielded similar volumetric estimates for hippocampal subfields as well as comparable patterns of 
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differences between study groups. The accelerated protocol can provide reliable imaging data for 

investigation of hippocampal subfields in AD-related MRI studies and the decreased scan time 

may result in less vulnerability to motion.
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1. INTRODUCTION

Alzheimer’s disease (AD), as the most common type of age-related dementia, is widely 

studied using neuroimaging approaches with special emphasis on memory critical structures. 

The hippocampus plays a key role in learning and memory and is a particularly vulnerable 

region for AD-related neurodegeneration (Greicius et al., 2004). Hippocampal measures 

extracted from magnetic resonance imaging (MRI) scans have been established as key 

biomarkers related to AD and mild cognitive impairment (MCI, a prodromal stage of AD) 

(Petersen et al., 1999). Thus, hippocampal volumetry and morphometry have been employed 

to detect the presence and progression of cognitive disorders in quantitative neuroimaging. 

However, due to the limited resolution of conventional MRI scans, most studies cannot 

clearly capture the critical hippocampal subfields as well as their neighboring cortical 

subregions. Of note, the hippocampal subfields and the neighboring cortical structures are 

not uniformly affected by AD pathology or by the normal process of aging (Adler et al., 

2014). Some regions (e.g., CA1 as reported in (Apostolova et al., 2006; Apostolova et al., 

2010a; Apostolova et al., 2010b)) are selectively more vulnerable, and thus they have the 

potential to serve as sensitive biomarkers for early stage AD diagnosis. Due to the size, 

complexity, heterogeneity and folding anatomy of the hippocampus, acquiring volumetric 

and morphometric measures of hippocampal subfields usually presents not only technical 

challenges in quantitative neuroimaging but also analytical challenges.

Since T1-weighted sequences at conventional magnet strength (1.5 or 3T) often lack the 

contrast and necessary resolution for observing sufficient anatomical details of hippocampal 

subfields (see Fig. 1(a,d,g)), conventional MRI studies on subcortical structures typically 

examine the entire hippocampus as a single structure (e.g., (Patenaude et al., 2011)). In order 

to overcome the resolution limitation, existing subfield studies usually employed high 

magnetic field strength (4T and above) or high resolution 3T MRI techniques (Huang et al., 

2013; Kirov et al., 2013; La Joie et al., 2013; Mueller et al., 2007; Mueller and Weiner, 

2009; Olsen et al., 2013; Pluta et al., 2012b; Van Leemput et al., 2009; Winterburn et al., 

2013b; Wisse et al., 2012; Wisse et al., 2016; Yassa and Stark, 2011), where, with the higher 

MRI resolution, hippocampal subfield layers could be better distinguished from one another. 

In these studies, manual (La Joie et al., 2013; Libby et al., 2012; Malykhin et al., 2010; 

Mueller and Weiner, 2009; Olsen et al., 2013; Pluta et al., 2012b; Winterburn et al., 2013b; 

Wisse et al., 2012) or semi-automated (Hunsaker and Amaral, 2014; Merkel et al., 2015; 

Yushkevich et al., 2010) methods were used to segment hippocampal subfields. However, 

these studies need long imaging acquisition times and tedious, labor insensitive work by 
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anatomically-trained tracers and thus, are not practical for the analysis of large-scale 

datasets. At this point, the major challenges remaining are (1) insufficient anatomical details 

provided by T1-weighted MRI scans at conventional resolution, and (2) very few validated 

tools available for automated segmentation of hippocampal subfields.

To address the first challenge, rather than using only standard T1-weighted MRI scans (e.g., 

1mm in plane resolution), this study employed multi-spectral analyses integrating 

conventional T1-weighted scans with high resolution T2-weighted at a widely available field 

strength (3T) (Bonnici et al., 2012; Mueller et al., 2010; Pluta et al., 2012a; Winterburn et 

al., 2013a). These scans have 0.4mm in plane resolution and enhanced contrast (see Fig. 1). 

As a result, the anatomical details of hippocampal subfields, which are not visible in 

conventional T1-weighted MRI scans, can be captured and utilized for extracting 

hippocampal subfields, as previously shown (Kirov et al., 2013; Yushkevich et al., 2015b). 

To address the second challenge, this study employs a previously established segmentation 

tool, Automatic Segmentation of Hippocampal Subfields (ASHS), (Yushkevich et al., 

2015b) specifically designed for analyzing high resolution T2-weighted MRI scans. ASHS is 

a free, open-source software package, which employs latest label fusion approaches for 

multi-atlas segmentation. It reads in a T1-weighted scan and a high resolution T2-weighted 

scan, and automatically labels hippocampal subfields and a few subregions in medial 

temporal lobe.

The standard acquisition time of a T2-weighted high resolution MRI scan is 8 minutes. By 

activating generalized auto-calibrating partially parallel acquisitions, the acquisition time 

can be reduced to 4 minutes. Compared with the standard 8-min protocol, the accelerated 4-

min protocol saves scanning time and reduces susceptibility to motion but at a cost to signal-

to-noise ratio. In this study, we performed a comparison of the standard and accelerated 

protocols for hippocampal subfield volume measurement using the ASHS segmentation 

technique. Our goals were to: (1) evaluate automatic hippocampal subfield segmentation 

results using high resolution T2-weighted 3T-MRI scans; (2) compare the hippocampal 

subfield measures between a standard unaccelerated 8-min scanning protocol and an 

accelerated 4-min protocol; (3) investigate hippocampal subfield volume changes among 

normal control (CN), subjective cognitive decline (SCD), MCI and AD participants, and to 

determine whether the pattern of these differences were similar using hippocampal subfields 

segmented from the unaccelerated 8-min scan relative to those from the accelerated 4-min 

scan, using a cohort recruited at the Indiana Alzheimer Disease Center (IADC).

2. MATERIALS AND METHODS

2.1 Sample and Demographics

The sample (n=35) included research subjects from four categories: cognitively normal (CN, 

n=10), subjective cognitive decline (SCD, n=9), mild cognitive impairment (MCI, n=10), 

and Alzheimer’s disease (AD, n=6). All participants were recruited from the Clinical Core 

of the Indiana Alzheimer Disease Center (IADC). All procedures were approved by the 

Indiana University Institutional Review Board. All subjects signed a written informed 

consent form. Participant characteristics are shown in Table 1.
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2.2 Image Acquisition

MRI scans were acquired on a Siemens MAGNETOM Prisma 3T MRI scanner. The 

scanning protocols included a T1-weighted MPRAGE sequence with whole-brain coverage 

and a T2-weighted TSE sequence with partial-brain coverage and an oblique coronal slice 

orientation (positioned orthogonally to the main axis of the hippocampus). The following 

MRI sequence parameters were used: the MPRAGE had an acquisition matrix of 240 × 256 

× 176 and voxel size 1.05 × 1.05 × 1.2 mm3; the T2 scan had an acquisition matrix of 448 × 

448 × 30 and voxel size 0.4 × 0.4 × 2 mm3 with TR/TE 8020/50 ms, 30 interleaved slices 

with no gap. The acquisition time of the conventional protocol is 8 minutes and 11 seconds. 

The accelerated protocol uses Siemens parallel imaging implementation (integrated parallel 

imaging techniques - iPAT) with an acceleration factor of 2, and thus reduces the acquisition 

time to 4 minutes 18 seconds.

2.3 Segmentation of Hippocampal Subfields

Automatic Segmentation of Hippocampal Subfields (ASHS) is a software tool developed by 

Yushkevich et al. (2015b) for automatically segmenting hippocampal subfields and their 

adjoining structures in the medial temporal lobe (MTL). The software has been used in 

several prior studies (de Flores et al., 2015; Hindy et al., 2016). This technique uses T1-

weighted and high resolution T2-weighted MRI scans as inputs, and performs multi-atlas 

segmentation by implementing Joint Label Fusion method (Wang et al., 2013) and 

Corrective Learning (Wang et al., 2011). ASHS has been shown to be able to produce 

accurate and reliable segmentation results in previous studies (de Flores et al., 2015; 

Yushkevich et al., 2015a; Yushkevich et al., 2015b). In this study, ASHS was used to 

segment the following hippocampal subfields and their adjoining regions from the 

unaccelerated and accelerated high resolution T2-weighted MRI scans coupled with the 

corresponding T1-weighted MRI scans (Fig. 2): cornu ammonis 1 (CA1), CA2, CA3, 

dentate gyrus (DG), subiculum (SUB), entorhinal cortex (ERC), Brodmann areas 35 and 36 

(BA35 and BA36, which together form the perirhinal cortex), and collateral sulcus (CS).

2.4 Volumetric Analysis

Two types of comparative volumetric analyses were performed in this study including: (1) 

reliability tests to evaluate whether the measures extracted from the 8-min and 4-min scans 

are similar, and (2) statistical group analyses to see whether similar discriminative patterns 

can be discovered from the 8-min and 4-min scans. All the statistical analyses were 

performed using IBM SPSS 23 (SPSS Statistics 23, IBM Corporation, Somers, NY).

In our analyses, we examined primary hippocampal subfields and adjoining regions 

segmented directly from the ASHS software, as well as several composite regions of interest 

(ROIs). Specifically, we included the following nine primary regions: CA1, CA2, CA3, DG, 

SUB, ERC, BA35, BA36, and CS. In addition, we examined the following three composite 

regions: cornu ammonis (CA) containing CA1, CA2, and CA3, hippocampus (HIPP) 

containing CA, DG, and SUB, and perirhinal cortex (PRC) containing BA35 and BA36.

2.4.1 Reliability Analyses—Intraclass Correlation Coefficients (ICCs) were estimated 

within each diagnostic group and across all participants to measure reliability of the subfield 
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volume estimates from the 8-min vs 4-min scans. ICCs are generally used to evaluate the 

consistency of quantitative measurements obtained by different acquisition protocols 

(Brebbia et al., 2011; Shrout and Fleiss, 1979).

In our study, ICCs were calculated to evaluate the reliability of the corresponding measures 

segmented from 8-min MRI scans versus those segmented from 4-min MRI scans. Given a 

variety of available ICC measures that may yield different values for the same data, we 

briefly describe below (1) the goal of this analytical study and (2) how to choose an 

appropriate ICC model for our reliability test to achieve the goal. The focus of this study is 

to examine the inter-rater reliability by comparing ASHS segmentation results from 8-min 

scans and 4-min scans. In our case, for each regional volume, we have estimates from two 

raters (i.e., volumes of regions segmented respectively from 8-min and 4-min MRI scans) 

and want to check whether they are consistent with each other. We employed a two-way 

mixed model, since the two acquisition protocols mentioned above were a fixed effect while 

the target ratings (e.g., all the regional volumes) were a random effect in our study. We 

tested the single measure reliability instead of the average measure reliability, because our 

goal was to evaluate the reliability of the ratings for a specific acquisition protocol (i.e., 

segmentation results from 4-min MRI scans) rather than the mean of all the ratings. We 

selected “consistency” as the model type instead of “absolute agreement”, since we were 

more interested in seeing the consistency of the relative standing of the measures over 

absolute agreement between two raters. In summary, the SPSS configurations of ICC 

analysis can be described as “two-way mixed model of single measure intraclass correlation 

with consistency type”. This type of ICC analysis belongs to “Case 3”, and can be denoted 

as “ICC(3,1)” based on (McGraw and Wong, 1996; Shrout and Fleiss, 1979).

ICC values range from 0 to 1 (from worse agreement to better agreement). In our study, an 

ICC value higher than 0.9 is considered as good agreement; an ICC value between 0.75 and 

0.9 is considered as borderline or acceptable. For the convenience of discussion, in the rest 

of the paper, a result with an ICC value under 0.75 is characterized as “less reliable”.

2.4.2 Statistical Group Analyses—In addition to comparing the reliability of 

segmentation results from 8-min MRI scans versus 4-min MRI scans, we performed 

analyses to evaluated differences between diagnostic groups using SPSS General linear 

model (GLM). Specifically, our goal was to investigate whether there were significant 

regional volume differences between normal control (CN), subjective cognitive decline 

(SCD), MCI, and AD participants. Further, we evaluated whether the pattern of differences 

between groups using subfield volumetric estimates from ASHS were similar using data 

from 8-min and 4-min scans. In our experiments, we employed a multivariate regression 

model with diagnosis (DX) as fixed factor; age, sex, and total intracranial volume (ICV) as 

covariates; and primary and composite regional volumes as dependent variables.

To further examine the volume based morphometric differences between diagnostic groups, 

pairwise comparisons of effect sizes were performed for CN, SCD, MCI, and AD groups. 

Effect sizes were calculated using Cohen’s d (Cohen, 1988). The effect size of each group 

difference was computed after covarying for age, sex, and ICV.
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3. RESULTS

3.1 Reliability Analyses

Table 2 shows inter-rater reliability results for the single measure ICC for the primary and 

composite regions both within each diagnostic group and across all groups. Fig. 3 shows the 

ICC results for all the primary and composite regions, within diagnostic groups, where error 

bars indicate the 95% confidence interval.

Across all participants (n=35), all the ICCs were significant at levels ranging from 0.886 

(right CA3) to 0.999 (left and right HIPP) (Fig. 3), indicating good or acceptable agreement 

and reliability. For the CN group (n=10), the ICCs range from 0.623 (left CA3) to 0.997 

(right BA36, right PRC). The only less reliable one in this group is the left CA3 region; all 

of the other regions have ICCs ranging from 0.865 (left CA2) to 0.997 (right BA36, right 

PRC). For the SCD group (n=9), the ICCs range from 0.688 (right CA3) to 0.998 (left 

HIPP). The only less reliable ones are the left and right CA3 regions; all of the other regions 

have ICCs ranging from 0.827 (right CA2) to 0.998 (left HIPP). For the MCI group (n=10), 

the ICCs range from 0.668 (right CA3) to 0.995 (right HIPP). The only less reliable one is 

the right CA3; all of the other areas have ICCs ranging from 0.819 (right CA2) to 0.995 

(right HIPP). For the AD group (n=6), the ICCs range from 0.638 (left CA3) to 0.994 (right 

HIPP). The only less reliable ones are the right CA2, left CA3, and right CA3; all of the 

other regions have ICCs ranging from 0.821 (left ERC) to 0.994 (right HIPP).

Overall, the most frequent less-reliable measures are located at the left and right CA3 

regions (occurring 3 out of 5 times) and the right CA2 (occurring once). Specifically, these 

outlying cases are listed below: ICCL_CA3 = 0.623 in the CN set, ICCL_CA3 = 0.72 in the 

SCD set, ICCR_CA3 = 0.688 in the SCD set, ICCR_CA3 = 0.668 in the MCI set, ICCR_CA2 = 

0.731 in the AD set, ICCL_CA3 = 0.638 in the AD set, and ICCR_CA3 = 0.742 in the AD set.

3.2 Statistical Group Analyses

Fig. 4 shows mean volume for each sub-region adjusted by age, sex and ICV by DX group, 

where error bars indicate standard error. By visual inspection, only CA2 and CA3 show a 

minor inconsistency between 4-min scan and 8-min scan, while the mean and standard error 

in other comparison groups show great consistency. Table 3 shows the p-values of pairwise 

group comparison covaried for age, sex, and ICV for both the 4-min and 8-min scan data. 

Given our modest sample size, we used the nominal p<0.05 as the threshold to identify 

significant regions (see red cells in Table 3). Based on Table 3, we observe similar patterns 

(e.g., significant regions detected) between results generated from 4-min and 8-min scan 

data. In terms of the identified significant regions, among six pairwise comparisons, two 

comparisons (CN vs. SCD, CN vs. MCI) showed 100% agreement between 4-min scans and 

8-min scans, two comparisons (SCD vs. MCI, MCI vs. AD) had 2 out of 24 mismatches, the 

comparison of CN vs. AD had 4 out of 24 mismatches, and the comparison of SCD vs. AD 

had 5 out of 24 mismatches. These mismatches are attributed to the following regions: two 

from left CA2, two from right CA2, one from left CA3, one from right SUB, one from left 

ERC, two from left BA35, two from right BA35, one from right BA36, and one from left 

PRC.
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Table 4 show the effect size results (Cohen’s d) for each pairwise comparison among four 

diagnosis groups (CN, SCD, MCI, and AD). According to (Sawilowsky, 2009), an effect 

size with d≥1.2 is considered to be “very large”, and thus is colored in red in Table 4. The 

effect size pattern shown in Table 4 is very similar to the significance pattern described in 

Table 3. Graphical effect size results are shown in Fig. 5, indicating strong agreement 

between 4-min scans (green) and 8-min scans (yellow).

4. DISCUSSION

We performed reliability tests within and across diagnostic groups, via computing ICC 

between measures obtained from the 8-min and 4-min scans. Our results demonstrated that 

the volumetric measures of hippocampal subfields and adjoining regions extracted from the 

4-min and 8-min scans showed strong consistency. The ICCs of all primary regions except 

CA2 and CA3 ranged from 0.821 to 0.997, suggesting majority of ASHS hippocampal 

subfield segmentations from both imaging modalities have either acceptable (ICC>0.75) or 

good (ICC>0.9) consistency. This finding indicates that the accelerated 4-min scanning 

protocol provides commensurate hippocampal subfield segmentation results to the standard 

8-min protocol with the added benefit of shorter scan time and likely reduced motion 

artefact. Of note, the investigation in (Yushkevich et al., 2015b) was performed on 8-min 

scans of a CN/MCI cohort, and was focused on comparing ASHS and manual segmentation 

results. In this work, our focus was to compare the ASHS segmentation results generated 

from accelerated 4-min scans and those from standard 8-min scans, using a cohort 

containing CN, SCD, MCI and AD participants.

The CA2 and CA3 subfields yielded suboptimal ICCs ranging from 0.731 to 0.95 and 0.623 

to 0.912 respectively. Some of these ICC levels are relatively low, which could be caused by 

a combination of several factors. CA2 and CA3 were the smallest hippocampal subfields as 

shown in Fig. 4(b, c). Given the fixed imaging resolution, small regions with complex 

anatomical structures tend to present more challenges in automated segmentation process 

and statistical analyses. As reported in (Yushkevich et al., 2015b), comparing ASHS with 

manual segmentation results, CA2 and CA3 also had lowest ICCs (0.4 and 0.484 

respectively) and dice coefficient values (0.552 and 0.525 in a cohort with N=29).

One strategy to overcome this limitation is to examine a composite region by combining 

several primary regions together. As shown in Table 2, after we combined all CA areas, 

improved ICCs were obtained. After combining all the CA regions, ICCCA increased to 

0.976 and 0.975 for left and right CAs in the CN group (n=10), 0.992 and 0.981 for left and 

right CAs in the MCI group (n=10), and 0.997 and 0.998 for left and right CAs across all 

participants (n=35). These findings are similar to those reported in (Yushkevich et al., 

2015b), as they observed similar improvements were observed using this strategy.

Given the nature of this study, we have only a limited number of subjects who have been 

scanned twice using 4-min and 8-min protocols respectively. Despite the modest sample 

size, the results are quite promising. When we included all participants (n=35), there were 

no obvious relatively low ICCs. However, when the group sizes were reduced to n=10 (CN 

and MCI) and n=9 (SCD), CA3 were observed as less reliable. For the smallest set (AD, 
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n=6), even more less reliable regions were observed (right CA2, left and right CA3s). 

However, the results of all the other segmented regions showed satisfactory agreement 

between 8-min scans and 4-min scans. The above impact on the consistency results of the 

CA2 and CA3 regions could be attributed to not only the small sample size, but also the 

attenuated variance within each diagnostic group.

To test whether 4-min and 8-min scans could have similar sensitivity to detect significant 

volumetric differences between diagnostic groups, we applied general linear model (GLM) 

to examine the regional volume changes related to diagnosis while covarying for age, sex, 

and ICV. This pair-wise comparison study was performed among four diagnostic groups: 

CN, SCD, MCI, and AD, for both the 8-min scans and 4-min scans. Tables 3–4 and Figs. 4–

5 demonstrate that similar patterns (red areas) were observed in both scan sets (8-min and 4-

min), and a majority of significant regions detected from 4-min scans were in accordance 

with the significant ones from 8-min scans. Overall, the results demonstrated strong 

agreement between 8-min scans and 4-min scans in detecting regional volume changes 

related to AD or at-risk stages of AD.

Given the small sample size in this study, we adopted a nominal significance level of p<0.05 

to evaluate the group differences. While comparing CN and SCD, a majority of regions 

demonstrate a trend of increased volume in the SCD group (Fig. 4), some of which were 

statistically significant (i.e., right DG, right BA35, and right HIPP; see the CN vs SCD 

column in Table 3). These findings suggest that this group might demonstrate increased 

regional volumes, potentially as a compensatory mechanism to delay the process of 

conversion into MCI for this group of subjects with relatively high risk. Similar statistical 

patterns were observed in (Risacher et al., 2015).

The major affected regions in AD include CA1, dentate gyrus, left subiculum, and left 

entorhinal cortex, as well as the composite CA, hippocampus and left perirhinal cortex. No 

regional significance between CN and SCD was identified. Also, we did not detect any 

regional significance between CN and MCI, unlike in (Yushkevich et al., 2015b), which 

demonstrated significant volumetric reductions in the dentate gyrus. Our lack of replication 

may be due to the small sample size of our study, making it under-powered to detect subtle 

changes.

Compared with previous results (Braak and Braak, 1995; Mueller et al., 2010; Yushkevich et 

al., 2015b), our analyses confirmed the importance of CA1, BA35, subiculum, and dentate 

gyrus as AD biomarkers. For example, in our study, BA35 turned out to be the only marker 

showing large difference between MCI and AD. This region was reported in (Braak and 

Braak, 1995) as the first cortical site affected by neurofibrillary tangle pathology. Also, we 

found that CA1 and the left subiculum could distinguish AD from CN and SCD, which is in 

accordance with the findings in (Mueller et al., 2010). In addition, we identified the dentate 

gyrus as a marker that distinguishes AD from CN and SCD. The dentate gyrus was 

identified in (Yushkevich et al., 2015b) as a marker showing differences between CN and 

MCI and the present results indicate sensitivity of this region to early through later stages. 

One potential application of a time efficient and robust scan acquisition enabling 
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hippocampal subfield investigation is the area of MRI markers related to adult neurogenesis, 

a process that interacts with AD pathophysiology (Horgusluoglu et al., 2017).

A recent study compared the accelerated and non-accelerated T1-weighted MRI scans for 

brain volume and boundary shift integral measures of volume changes using the data from 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort (Manning et al., 2017). 

This study found that the accelerated scan protocol yielded fewer scan pairs with serious 

motion artefacts while not significantly changing the main results which included rate of 

volume changes. Similarly, our findings comparing the hippocampal subfield volumetric 

differences using the accelerated and non-accelerated high resolution T2-weighted MRI 

protocols also demonstrated positive findings supporting the use of the accelerated sequence.

In summary, our reliability analysis demonstrated that two scanning protocols (i.e., standard 

8-min one and accelerated 4-min one), evaluated with the ASHS segmentation method, yield 

similar volume estimates for most hippocampal subfields and adjoining regions. In addition, 

our group analysis showed that these scan protocols produce similar statistical patterns in 

detecting significant regions between cognitively normal older adults and those with MCI 

and/or AD. CA2 and CA3 showed some minor inconsistency in our studies, which is not 

unexpected based on previous studies, as these are very challenging regions to segment 

given the limited scan resolution in relation to their small sizes. This limitation can be 

addressed to some extent by grouping the three CA regions together into a composite 

measure. In summary, our results suggest that the accelerated 4-min high-resolution 

hippocampal scan protocol can provide reliable imaging data for investigation of 

hippocampal subfields in AD-related MRI studies and may be less vulnerable to motion.
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Fig. 1. 
Coronal Views: (a–c) Conventional MRI, 4-min high resolution MRI, and 8-min high 

resolution MRI. (d–f) Left hippocampal area on conventional MRI, 4-min high resolution 

MRI, and 8-min high resolution MRI. (g–i) Right hippocampal area on conventional MRI, 

4-min high resolution MRI, 8-min high resolution MRI.
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Fig. 2. 
Examples of automatic segmentation results from (a) 4-min scans and (b) 8-min scans: Five 

coronal slices and one sagittal slice are shown.
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Fig. 3. 
Results of Intraclass Correlation Coefficients (ICC) analysis for the following groups: (a) 

CN participants, (b) SCD participants, (c) MCI participants, and (d) AD participants. Error 

bar indicates the 95% confidence interval.
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Fig. 4. 
Group comparison for each of primary labels and compound labels. Mean and standard error 

(as error bar) are shown for each group (HC, SCD, MCI, or AD).
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Fig. 5. 
Effect sizes (Cohen’s d) of the pair-wised comparisons between four diagnosis groups (CN, 

SCD, MCI, and AD) evaluated for hippocampal subfield volumes. Subfield volumes are 

adjusted by age, gender and ICV by DX group.
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Table 1

Participant characteristics regarding age, gender, and intracranial volume (ICV).

Age Gender ICV

(mean±std, in years) (M, F) (cm3)

Cognitively normal control (CN, n=10) 69.2±5.7 1, 9 1437±146

Subjective cognitive decline (SCD, n=9) 71.3±6.4 5, 4 1469±201

Mild cognitive impairment (MCI, n=10) 72.9±6.2 5, 5 1464±255

Alzheimer’s disease (AD, n=6) 64.5±12.9 2, 4 1407±174

 p-value 0.197* 0.157** 0.993*

*
One-way ANOVA.

**
Chi-square test.
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