3 research outputs found

    Dermal Lymphatic Capillaries Do Not Obey Murray's Law

    No full text
    Lymphatic vessels serve as a major conduit for the transport of interstitial fluid, immune cells, lipids and drugs. Therefore, increased knowledge about their development and function is relevant to clinical issues ranging from chronic inflammation and edema, to cancer metastasis to targeted drug delivery. Murray's Law is a widely-applied branching rule upheld in diverse circulatory systems including leaf venation, sponge canals, and various human organs for optimal fluid transport. Considering the unique and diverse functions of lymphatic fluid transport, we specifically address the branching of developing lymphatic capillaries, and the flow of lymph through these vessels. Using an empirically-generated dataset from wild type and genetic lymphatic insufficiency mouse models we confirmed that branching blood capillaries consistently follow Murray's Law. However surprisingly, we found that the optimization law for lymphatic vessels follows a different pattern, namely a Murray's Law exponent of ~1.45. In this case, the daughter vessels are smaller relative to the parent than would be predicted by the hypothesized radius-cubed law for impermeable vessels. By implementing a computational fluid dynamics model, we further examined the extent to which the assumptions of Murray's Law were violated. We found that the flow profiles were predominantly parabolic and reasonably followed the assumptions of Murray's Law. These data suggest an alternate hypothesis for optimization of the branching structure of the lymphatic system, which may have bearing on the unique physiological functions of lymphatics compared to the blood vascular system. Thus, it may be the case that the lymphatic branching structure is optimized to enhance lymph mixing, particle exchange, or immune cell transport, which are particularly germane to the use of lymphatics as drug delivery routes. Copyright © 2022 Talkington, Davis, Datto, Goodwin, Miller and Caron.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    <i>Streptococcus pneumoniae</i>: virulence factors and variation

    Get PDF
    Streptococcus pneumoniae is a major pathogen of humans, causing diseases such as pneumonia and meningitis. The organism produces several virulence factors that are involved in the disease process. The molecular basis of the action of some of these virulence factors is being elucidated. The advent of whole genome sequencing combined with biological studies has demonstrated that genome variation is important in the ability of pneumococci to interact with the host. This review discusses the biological activity of several pneumococcal virulence factors, and describes how genome variation may impact on the ability of pneumococci to cause disease
    corecore