41 research outputs found

    Shifts of Effective Connectivity within a Language Network during Rhyming and Spelling

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1523/JNEUROSCI.0864-05.2005.We used functional magnetic resonance imaging to examine task-specific modulations of effective connectivity within a left-hemisphere language network during spelling and rhyming judgments on visually presented words. We identified sites showing task-specific activations for rhyming in the lateral temporal cortex (LTC) and for spelling in the intraparietal sulcus (IPS). The inferior frontal gyrus (IFG) and fusiform gyrus were engaged by both tasks. Dynamic causal modeling showed that each task preferentially strengthened modulatory influences converging on its task-specific site (LTC for rhyming, IPS for spelling). These remarkably selective and symmetrical findings demonstrate that the nature of the behavioral task dynamically shifts the locus of integration (or convergence) to the network component specialized for that task. Furthermore, they suggest that the role of the task-selective areas is to provide a differential synthesis of incoming information rather than providing differential control signals influencing the activity of other network components. Our findings also showed that switching tasks led to changes in the target area influenced by the IFG, suggesting that the IFG may play a pivotal role in setting the cognitive context for each task. We propose that task-dependent shifts in effective connectivity are likely to be mediated through top-down modulations from the IFG to the task-selective regions in a way that differentially enhances their sensitivity to incoming word-form information

    Deficient orthographic and phonological representations in children with dyslexia revealed by brain activation patterns

    Get PDF
    Background: The current study examined the neuro-cognitive network of visual word rhyming judgment in 14 children with dyslexia and 14 age-matched control children (8-to 14-year-olds) using functional magnetic resonance imaging (fMRI). Methods: In order to manipulate the difficulty of mapping orthography to phonology, we used conflicting and non-conflicting trials. The words in conflicting trials either had similar orthography but different phonology (e.g., pint-mint) or similar phonology but different orthography (e.g., jazz-has). The words in non-conflicting trials had similar orthography and phonology (e.g., gate-hate) or different orthography and phonology (e.g., presslist). Results: There were no differences in brain activation between the controls and children with dyslexia in the easier non-conflicting trials. However, the children with dyslexia showed less activation than the controls in left inferior frontal gyrus (BA 45/44/47/9), left inferior parietal lobule (BA 40), left inferior temporal gyrus/fusiform gyrus (BA 20/37) and left middle temporal gyrus (BA 21) for the more difficult conflicting trials. For the direct comparison of conflicting minus non-conflicting trials, controls showed greater activation than children with dyslexia in left inferior frontal gyrus (BA 9/45/46) and medial frontal gyrus (BA 8). Children with dyslexia did not show greater activation than controls for any comparison. Conclusions: Reduced activation in these regions suggests that children with dyslexia have deficient orthographic representations in ventral temporal cortex as well as deficits in mapping between orthographic and phonological representations in inferior parietal cortex. The greater activation for the controls in inferior frontal gyrus could reflect more effective top-down modulation of posterior representations

    Peripheral Nerve Reconstruction Using Enriched Chitosan Conduits

    Get PDF
    The repair of peripheral nerve traumatic lesions still represents a major cause of permanent motor and sensory impairment. In case of substance loss, a nerve guide should be used to bridge the proximal with the distal stump of the severed nerve. The effectiveness of hollow nerve guides is limited by the delay of axonal growth due to the absence of a regeneration substrate inside the conduit. To fasten up nerve regeneration, nerve guides should thus be enriched by a luminal filler. In this study, we investigated, in a 12-mm rat sciatic nerve defect experimental model, the effectiveness of chitosan-based conduits of different acetylation filled either with a hyaluronic acid gel (NVR gel) or with a magnetic fibrin hydrogel, in comparison with traditional autografts. Results showed that all types of artificial nerve conduits led to functional recovery not significantly different from autografts. By contrast, morphological and morphometrical analyses showed that the best results among nerve guides were found in medium degree of acetylation (DAII: ∌5%) chitosan conduits enriched with the NVR gel

    Effect of Local Delivery of GDNF Conjugated Iron Oxide Nanoparticles on Nerve Regeneration along Long Chitosan Nerve Guide

    Get PDF
    Local delivery of neurotrophic factors is a pillar of neural repair strategies in the peripheral nervous system. The main disadvantage of the free growth factors is their short half‐life of few minutes. In previous studies, it was demonstrated that conjugation of various neurotrophic factors to iron oxide nanoparticles (IONP) led to stabilization of the growth factors and to the extension of their biological activity compared to the free factors. In vitro studies performed on organotypic dorsal root ganglion (DRG) cultures seeded in NVR gel (composed mainly of hyaluronic acid and laminin) revealed that the glial cell–derived neurotrophic factor (GDNF) conjugated to IONP‐enhanced early nerve fiber sprouting and accelerated the onset and progression of myelin significantly earlier than the free GDNF and other free and conjugated factors. The present article summarizes results of in vivo study, aimed to test the effect of free versus conjugated GDNF on regeneration of the rat sciatic nerve after a severe segment loss. We confirmed that nerve device enriched with a matrix with GDNF gives more successful results in term of regeneration and functional recovery in respect to the hollow tube; moreover, there are no detectable differences between free versus conjugated GDNF

    Children with Reading Disability Show Brain Differences in Effective Connectivity for Visual, but Not Auditory Word Comprehension

    Get PDF
    Background: Previous literature suggests that those with reading disability (RD) have more pronounced deficits during semantic processing in reading as compared to listening comprehension. This discrepancy has been supported by recent neuroimaging studies showing abnormal activity in RD during semantic processing in the visual but not in the auditory modality. Whether effective connectivity between brain regions in RD could also show this pattern of discrepancy has not been investigated. Methodology/Principal Findings: Children (8- to 14-year-olds) were given a semantic task in the visual and auditory modality that required an association judgment as to whether two sequentially presented words were associated. Effective connectivity was investigated using Dynamic Causal Modeling (DCM) on functional magnetic resonance imaging (fMRI) data. Bayesian Model Selection (BMS) was used separately for each modality to find a winning family of DCM models separately for typically developing (TD) and RD children. BMS yielded the same winning family with modulatory effects on bottom-up connections from the input regions to middle temporal gyrus (MTG) and inferior frontal gyrus(IFG) with inconclusive evidence regarding top-down modulations. Bayesian Model Averaging (BMA) was thus conducted across models in this winning family and compared across groups. The bottom-up effect from the fusiform gyrus (FG) to MTG rather than the top-down effect from IFG to MTG was stronger in TD compared to RD for the visual modality. The stronge

    Orthographic Transparency Enhances Morphological Segmentation in Children Reading Hebrew Words

    No full text
    Morphological processing of derived words develops simultaneously with reading acquisition. However, the reader’s engagement in morphological segmentation may depend on the language morphological richness and orthographic transparency, and the readers’ reading skills. The current study tested the common idea that morphological segmentation is enhanced in non-transparent orthographies to compensate for the absence of phonological information. Hebrew’s rich morphology and the dual version of the Hebrew script (with and without diacritic marks) provides an opportunity to study the interaction of orthographic transparency and morphological segmentation on the development of reading skills in a within-language design. Hebrew speaking 2nd (N = 27) and 5th (N = 29) grade children read aloud 96 noun words. Half of the words were simple mono-morphemic words and half were bi-morphemic derivations composed of a productive root and a morphemic pattern. In each list half of the words were presented in the transparent version of the script (with diacritic marks), and half in the non-transparent version (without diacritic marks). Our results show that in both groups, derived bi-morphemic words were identified more accurately than mono-morphemic words, but only for the transparent, pointed, script. For the un-pointed script the reverse was found, namely, that bi-morphemic words were read less accurately than mono-morphemic words, especially in second grade. Second grade children also read mono-morphemic words faster than bi-morphemic words. Finally, correlations with a standardized measure of morphological awareness were found only for second grade children, and only in bi-morphemic words. These results, showing greater morphological effects in second grade compared to fifth grade children suggest that for children raised in a language with a rich morphology, common and easily segmented morphemic units may be more beneficial for younger compared to older readers. Moreover, in contrast to the common hypothesis, our results show that morphemic segmentation does not compensate for the missing phonological information in a non-transparent orthography, but rather that morphological segmentation is most beneficial in the highly transparent script. These results are consistent with the idea that morphological and phonological segmentation processes occur simultaneously and do not constitute alternative pathways to visual word recognition

    Stimulus variability in reading a novel script (Adwan-Mansour & Bitan, 2017)

    No full text
    <div>The benefit of stimulus variability for generalization of acquired skills and knowledge has been shown in motor, perceptual, and language learning but has rarely been studied in reading. We studied the effect of variable training in a novel language on reading trained and untrained words.</div><div><br></div><div>Sixty typical adults received 2 sessions of training in reading an artificial script. Participants were assigned to 1 of 3 groups: a variable training group practicing a large set of 24 words, and 2 nonvariable training groups practicing a smaller set of 12 words, with twice the number of repetitions per word.</div><div><br></div><div>The stimulus set consisted of 36 nonwords written in an artificial script, previously used in Bitan & Booth (2012), in which a pair of symbols represents one letter, and six symbols in different permutations create all six letters of the alphabet. All nonword were composed of two consonants and one vowel in all possible syllable structures (CVC, VCC, CCV).</div><div><b><br></b></div><div><b>Supplemental Material. </b>Variable and nonvariable stimuli. </div><div><br></div><div>Adwan-Mansour, J., & Bitan, T. (2017). The effect of stimulus variability on learning and generalization of reading in a novel script. <i>Journal of Speech, Language, and Hearing Research.</i> Advance online publication. https://doi.org/10.1044/2017_JSLHR-L-16-0293<br></div
    corecore