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Object: This study evaluated a chitosan tube for regeneration of the injured peripheral nerve in a rodent transected sciatic nerve model in comparison to 
autologous nerve graft repair. Methods: Chitosan hollow tube was used to bridge a 10-mm gap between the proximal and distal ends in 11 rats. In the 
control group, an end-to-end coaptation of 10-mm long autologous nerve graft was performed in 10 rats for 
nerve reconstruction. Results: SFI showed an insignificant advantage to the autologous group both at 30 days (P 5 0.177) and at 90 
days post procedure (P 5 0.486). Somato-sensory evoked potentials (SSEP) and compound muscle action potentials (CMAP) tests  
showed similar results between chitosan tube (group 1) and autologous (group 2) groups with no statistically significant differences. Both groups 
presented the same pattern of recovery with 45% in group 1 and 44% in group 2 (P 5 0.96) showing SSEP activity at 30 days. At 90 days most rats 
showed SSEP activity (91% vs.80% respectively, P 5 0.46). The CMAP also demonstrated no statistically significant dif-ferences in latency (1.39 ms in 
group 1 vs. 1.63 ms in group 2; P 5 0.48) and amplitude (6.28 mv vs. 6.43 mv respectively; P 5 0.8). Ultra-sonography demonstrated tissue growth inside 
the chitosan tube. Gastrocnemius muscle weight showed no statistically significant difference. Histomorphometry of the distal sciatic nerve, 90 days post 
reconstructive procedure, showed similar number of myelinated fibers and size parameters in both groups (P _0.05). Conclusions: Chitosan hollow tube 
used for peripheral nerve reconstruction of rat sciatic nerve showed similar results in comparison to autologous nerve grafting. V
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Peripheral nerve injuries represent a major cause of morbidity and disability worldwide, as well as 
lead to substantial costs to society at individual and national lev-els. It has been estimated that 
peripheral nerve injuries affect 2.8% of all trauma patients, many of whom acquire life-long 
disability.

1
 The annual incidence of peripheral nerve injuries in developed countries has been reported 

as 13 to 23 out of 100,000 persons.
2–4

  
Recovery following severe peripheral nerve injury is often dismal despite the inherent capability 

for axonal regeneration.
3
 Autologous nerve grafts are considered the gold standard treatment in cases 

of nerve defect, although often not providing satisfactory results. Moreover, autolo-gous nerve donor 
may cause related neurological morbid-ity at the donor site, including possible neuroma formation.

5
  

The gold standard autograft repair of the damaged peripheral nerve is far from optimal and is often 
disap-pointing.

6
 Interposition of nerve scaffold

7
 whether cellu-lar allograft or an artificial acellular 

conduit
8
 is an alternative procedure to the use of grafts. Most repair scaffolds consist of a hollow tube 

made of polymeric  materials such as silicone, biologic materials such as col-lagen, or biodegradable 
polymers.

5,9–13
 The use of nerve guidance channels (tubes), sutured in between the proxi-mal and 

distal nerve stumps, has been actively pursued to obviate the need for the second procedure at the 
donor site and to obtain better regenerative results in compari-son to the autologous nerve graft. 
Entubulation repair cause less surgical trauma at the repair site,

14
 and may decrease the possibility for 

neuroma formation. More-over, guidance channels may assist in directing axons from the proximal to 
the distal stump without any inter-ference from imperfectly aligned degenerating fascicles of the 
nerve graft or the closely apposed distal stump and reduce axonal staggering.

14
 Guidance channels 

mini-mize the infiltration of fibrous scar tissue, which may further hinder axonal regeneration,
15–17

 
while at the same time maximize the accumulation of soluble factors produced by the nerve stumps, 
and may also act as scaf-folds for different filling materials which can further sup-port regeneration. 
Nevertheless, tubulization with simple guides usually fails when bridging relatively long gaps of 6 
mm in mice,

18,19
 15 mm in rats

20
 and 30 mm in prima-tes.

21,22
 There are several hollow nerve tubes 

currently available for clinical use, which are applied for repair of small-diameter nerves with nerve 
defects of up to 2– 3 cm.

23–26
 These nerve tubes (including Neurotube [Synovis; polyglycolic acid], 

Neuro-lac [Ascension; poly lac-tide-co-e-caprolactone], and Neura-Gen [Integra; type-I collagen]) are 
made of different biomaterials and there-fore differ in their physical properties. Due to the small nerve 
diameter and limited length, these conduits are clinically used for the repair of digital nerve injuries 
and do not benefit the majority of patients suffering from severe peripheral nerve injury. Severe nerve 
injuries with massive loss defect are currently treated with autograft repair, however, despite the 
advanced microsurgical tech-niques, functional recovery is far from being optimal and often 
disappointing.

27
 Therefore, innovative regenerative therapies for injured peripheral nerve that 

simultaneously potentiate axonal regeneration, promote selective target reinnervation and modulate 
central reorganization are needed.

28
 This study investigates, from a pre-clinical per-spective, an 

artificial nerve device designed to reconstruct injured peripheral nerves. 
 

MATERIALS AND METHODS 
 

This study was performed in accordance with approved protocols by the Institutional Animal Care 

and adhered strictly to the Animal Care guidelines. The ani-mals were housed 2 per cage with a 12-

hour light/dark cycle, with free access to food and water. 
 
Preparation of Chitosan Tube 
 

Chitosan is partially or fully deacetylated form of chi-tin, which is found widely in nature in the 
exoskeletons of  
arthropods, shells of crustaceans, the cuticles of insects and the cell walls of fungi.

29,30
 It is made up 

of b(1!4)  
linked D-glucosamine and N-acetyl-D-glucosamine sub units. It is used in biomedical applications 
because of its biocompatibility, low toxicity, biodegradability, and struc-tural similarity to natural 
glycosaminoglycans.  

Chitosan-based scaffolds, developed and manufac-tured by Medovent GmbH, Germany, were used 

in this study. 



 

Experiment Design and Surgical Technique 
 
The model for this in vivo study consisted of 21 female Wistar rats, weighing 200–250 g each. The 

rats were oper-ated to establish a complete sciatic nerve defect of 10 mm, immediately followed by 

nerve reconstruction employing composite chitosan-based hollow tube (n 5 11) or autolo-gous nerve 

graft (n 5 10). General anesthesia was induced with intra-peritoneal injection of xylazine (15 mg) and 

ketamine (50 mg). The procedure was performed using a high magnification surgical microscope.  
In group I, the left sciatic nerve was exposed and separated from biceps femoris and 

semimembranosus muscles beginning from the area of branches to the glutei and hamstring muscles 

and distally to the trifurcation into peroneal, tibial, and sural nerves. The sciatic nerve was then 

transected and a 5 mm nerve segment was removed. A 12 mm chitosan hollow tube was placed 

between the proximal and the distal parts of the trans-ected nerve for reconstruction, enabling the 

nerve to enter the tube 1 mm on each side, while providing a 10 mm gap between the proximal and 

distal ends. Two 9-0 non-absorbable sutures were used to anchor the tube to the epineurium at the 

proximal and distal nerve stumps (Fig. 1). The muscular, subcutaneous and skin layers were closed. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Nerve reconstruction using chitosan-based hollow tube.  
 

In group II, the left sciatic nerve was exposed as described above and then sharply incised with 

micro scis-sors at the femur level below the superior gluteal nerve and above the division of the 

sciatic nerve to the tibial nerve and the peroneal nerve. A nerve segment of 10 mm was inverted. 

Immediately thereafter, end-to-end coaptation was performed using 2 to 3 non-absorbable 10-0 

sutures. Coaptation of nerve fascicles was carried out to preserve all the fascicles within the epineural 

sac. The muscular, subcutaneous and skin layers were closed. 

Pre-operative evaluation and post-operative follow-up was performed and consisted of functional 

motor assess-ment of the sciatic nerve utilizing SFI, electrophysiologi-cal assessment of nerve 

conductivity, applying SSEP studies and CMAP. All assessment of SFI, SSEP, and CMAP were 

carried out in a blinded manner without dis-closure of the different groups to the evaluating team. 

During the observational period, imaging studies employ-ing ultrasonography were carried out for 

evaluation of nerve regeneration inside the chitosan hollow tubes. 

 

Sciatic functional index. SFI is a widely described test which helps to evaluate the functionality 

of operated sciatic nerve in rats in compared to the opposite intact limb.31–36 The rat was placed on a 

paper track after dipping the hind limbs in non-toxic ink. The imprints from the ambulating hind 

limbs enabled us to measure the maximal footprint length (PL), maximal distance between fingers 1-5 

(IT) and fingers 2-4 (TS), from both normal (N) and operated (E) legs. The SFI value was calculated 

using Bain’s formula.37 



 

All rats were evaluated for SFI at baseline (prior to surgery), as well as at 30 and 90 days after 

surgical reconstruction. The data were collected in a blinded man-ner and the groups were revealed to 

the examiner only after completion of the study. 

 

Electrophysiology. Electrophysiology studies, SSEPs and CMAPs, were recorded using the 

Dantec “KEYPOINT” workstation. Conductivity of the sciatic nerve and spinal cord was studied by 

stimulation of the sci-atic nerve at the level of the tarsal joint with simultaneous recording from the 

skull over the somatosensory cortex. The SSEP recordings were performed on all rats in a blinded 

manner before surgery and at 30 and 90 days fol-lowing the surgical procedure. During the 

electrophysio-logical study the rats were anesthetized using xylazine (15 mg) and ketamine (50 mg). 

Two subcutaneous needle electrodes were inserted under the skin of the scalp with the active 

electrode over the somatosensory cortex along the midline and reference electrode between the eyes. 

The ground electrode was placed subcutaneously on the dorsal back. The sciatic nerve was stimulated 

by two polarized electrodes placed on the lateral aspect of the tarsal joint. An average was generated 

of at least three hundred stimulation pulses of 0.1 msec in duration at a rate of 3 Hz. The stimu-lus 

intensity was set on 1.5–3.5 mA until a slight twitching of the limb was noted. The appearance of an 

evoked poten-tial in two consecutive tests as a response to a stimulus was considered positive. Since 

SSEP pose substantial technical difficulties and more subjected to variations of anesthesia and level of 

central synaptic efficacy,38 CMAP was added at 90 days to aid and validate electrophysiological 

studies. CMAP testing was performed on left hind limb and just prior to harvesting of the 

reconstructed nerves. CMAPs were done by applying supra-maximal stimulation (maxi-mal 

response120%) of the proximal sciatic nerve with electrodes placed at the sciatic notch and recording 

electro-des in the gastrocnemius muscle. 

 

The data were collected in a blinded manner and the groups were revealed to the examiner only 

after comple-tion of the study. 



 

  
 
Ultrasound  imaging . Ultrasound  imaging  enables in vivo periodic assessment of the tube. All rats 

were anesthetized during the sonographic examination. Ultra-sound examinations were performed on 

a unit equipped with color Doppler capabilities using 7–15 MHz linear transducer yielding an axial 

resolution of 0.2–0.4 mm. The sonographic scanning technique included longitudi-nal and transverse 

sections with a standard scanning gel. Identification of the chitosan tube on the ultrasound image was 

based on the recognition of a hyper-echoic structure of tubular shape in the longitudinal axis and cir-

cular shape on transverse section. This imaging modality has not been previously described for real-

time in vivo evaluation of peripheral nerve-tube reconstruction. In this work we utilized 

ultrasonography for evaluation of the proximal and distal nerve stumps, integrity of the implanted 

chitosan tube, the nerve-tube relationship and demonstration of tissue proliferation inside the chitosan 

tube. Ultrasonography was used for imaging of the chito-san reconstruction group at 30 and 90 days 

after surgery. 
 
Histology and morphometrical analysis. Regen-erated sciatic nerve samples were harvested and fixed 

for 2 hour in a solution of 2.5% glutaraldehyde in Sorensen buffer 0.1M added with 0,5% sucrose. 

Samples were then washed in Sorensen buffer 0.1M added with 1,5% sucrose, post-fixed in 2% 

osmium tetroxide, dehydrated with ethanol and embedded in a mixture of Araldite res-ins following 

Glauerts’ procedure.  
The distal part of sciatic nerve samples were processed 5 mm distally to the area of neurorrhaphy 

(tube or distal nerve coaptation) for quantitative morphometry of myelin-ated nerve fibers. Series of 

2-mm thick semi-thin transverse sections were cut using a Leica Ultracut UCT ultramicro-tome 

(Leica Microsystems, Wetzlar, Germany) and stained by Toluidine blue. Stereology was carried out 

on a DM4000B microscope equipped with a DFC320 digital camera and an IM50 image manager 

system (Leica Micro-systems, Wetzlar, Germany). Systematic random sampling and D-dissector were 

adopted using a protocol previously described.39 Total fiber number, fibers’ and axons’ diame-ter and 

myelin thickness were estimated. 
 
Muscle weight assessment. Immediately following harvest of the regenerated nerve tissue, the 
gastrocnemius muscle was removed on both sides (intact and operated hind limbs) and the wet muscle 
weight was recorded.  
Statistical analysis. Data analysis was carried out on all 21 rats; 11 rats underwent reconstruction 

using chitosan tube, and 10 rats were treated according to auto-logous nerve graft reconstruction 

model. Statistical analy-sis and calculations were done using MatLab software (Ver. 2008b, The 

MathWorks, Inc.). Non-parametric sta-tistics were used in this study. Hence, all figures are pre-sented 

with Median 6 Mad. All significance levels were calculated using a Mann-Whitney U test and a 

Wilcoxon signed-rank test. SSEP responses were analyzed as cate-gorical parameters using v2 test. 
 

RESULTS 
 

For evaluation of nerve reconstruction using chitosan hollow tube versus standard of care 

reconstruction with autologous nerve graft, we have used the following research measures: behavioral 

(SFI), electrophysiological (SSEP, CMAP), nerve imaging studies (US), histomor-phometrical 

analysis, and muscle weights. To identify ongoing changes, we have conducted measurements at 

different time periods (0, 30, and 90 days).  
Maintenance of bodyweight or rate of weight gain is one of the indicators of an animal’s state of 

health.40 We have found that 30 days after surgery the rats weight gain was minimal (6 g, 10.5 g; P 5 

0.413), which might indicate stress related to the postsurgical healing process. After this initial phase, 

the rats continued gaining weight (19.5 g versus 22.5 gr; P 5 0.338) until the end of the experiment 
(45 gr vs. 55.4 gr; P 5 0.172). This weight gaining tendency was found to be identical in both chito-

san tube and autologous nerve graft groups (Fig. 2). 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Weight gain related to the weight at the time of surgery, measured at day 30 and day 90 post-operatively. 

Average weight gain and standard deviation is presented for each group. 
 

 

 

 

 

 

 

Figure 3. Ultrasound imaging of in vivo chitosan tube. Left image demonstrates the tube 30 days following surgery. Right 

image demon-strates the tube 90 days following surgery, with tissue proliferation inside the degraded tube. Changes in the 

ecogenicity of the tube can be appreciated, which may correlate with degradation process.  

 

SFI showed no statistically significant difference between the chitosan tube reconstruction (group 

1) and autologous nerve graft (group 2) groups both at the 30-days point (287.1 6 9.1 vs. 284.5 6 14.5, 

P 5 0.177, respectively) and the 90-days point (274.2 6 16.9 vs. 266.8 6 10.7, P 5 0.486, respectively). 

 

Both groups presented the same pattern of recovery, with about half showing some SSEP activity 

at 30 days (45% group 1 vs. 44% group 2, P 5 0.96). One rat from group 2 was not included in this 

evaluation. At 90 days, most rats (91% group 1 vs. 80% group 2, P 5 0.46) showed SSEP activity. 

CMAP testing was carried out 90 days after surgery. No statistically significant difference was found 

between the groups both in latency (1.39 ms vs. 1.63 ms; P 5 0.48) and amplitude (6.28 mv vs. 6.43 

mv; P 5 0.8). 

 

Ultrasonography imaging performed during the obser-vational period demonstrated progressive 

tissue growth inside the tube and no signs of conduit collapse or com-pression along the post-

operative period (Fig. 3). The operated sciatic nerve was exposed 90 days after surgery (Fig. 4). The 

corresponding gastrocnemius muscle was harvested for evaluation of muscle weight. As expected, 

there was significant difference in gastrocnemius muscle weight between operated left limb and the 

intact right limb (0.6 vs. 1.3, P < 0.001). No statistically significant difference was noted between the 

study group (chitosan hollow tube) and the control group (autologous nerve graft) (0.7 vs. 0.6, P 5 

0.3) (Fig. 5). 

 

Representative high resolution light micrographs of semi-thin sections of the regenerated sciatic 



nerves are shown in Figure 6. Axonal regeneration occurred in both experimental groups (A: 

autograft, B: chitosan tube) with good regeneration pattern. Toluidine blue stained trans-verse nerve 

sections showed microfascicles typical of regenerated nerves. Figure 7 shows the results of the 

stereological assessment of myelinated fibers number (A) and diameter, myelin thickness and g-ratio 

(B) in the two experimental groups. The total number of myelinated nerve fibers was comparable 

between the two groups (P_0.005) (15867 63318 in the autograft group vs. 15,30262,872 in the 

chitosan group). Also the size parameters were not statistically different between the two 

experimental groups (P _0.05) (fiber diameter: 3.75 6 0.36 vs. 3.41 6 0.25; myelin thickness: 0.65 6 

0.05 vs. 0.65 6 0.02; g-ratio: 0.58 6 0.24 vs. 0.57 6 0.11). 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Reconstructed nerve after 90 days. Left image demonstrates left sciatic nerve growth inside the hollow chitosan 

tube is seen. No visual signs of inflammatory response around the tube are seen. Right image shows reconstructed left 

sciatic nerve using autologous nerve graft.  

 

DISCUSSION 
 

Peripheral nerve injuries are a significant cause of mor-bidity. Despite the inherent ability of the 

peripheral nerv-ous system to regenerate, functional recovery after severe nerve injury is often 

unsatisfactory. Biohybrid project, con-sisting of research and development groups across Europe, was 

established with the aim of developing an implant that will promote better nerve regeneration, which 

will allow functional recovery without the need of harvesting nerve for transplant.
41,42

 The purpose of 

this study, conducted as part of the Biohybrid project, was to evaluate reconstruc-tion of nerve loss 

with chitosan hollow tube compared to the accepted standard of care reconstruction consisting of 

autologous nerve grafting. The main focus was to provide pre-clinical evidence from the perspective 

of clinical employment of chitosan hollow tubes.  
Previous research publications using various tubes for  

nerve reconstruction, and some of which are in clinical use, demonstrated functional recovery.
7,9,26,43

 
The  
required properties of an optimal nerve conduit should be biodegradable, permeable, flexible but non-
collapsible, simple to handle and suture, transparent and capable of being sterilized without 
compromising its physical prop-erties.

26
 Some of the limitations of artificial nerve con-duits relate to 

the absence of Schwann cells to support nerve regeneration which are present in the nerve auto-graft. 
Also hollow tubes lack internal supporting struc-tures which may facilitate nerve growth.  
Chitosan is an attractive material because of its mechanical strength, transparency, porosity, 
biodegradability, and biocompatibility without causing inflammatory response which may impair 
regeneration.30,44 Several stud-ies have referred to the potential benefits of chitosan in the design of 
controlled drug release systems.45,46 The excel-lent biocompatibility of chitosan, together with its 
specific interaction with components of the extracellular matrix and growth factors, led to its use in 
tissue engineering.47 It was also observed that due to its cationic nature, chitosan covalently coupled 



to agarose gel enhanced neurite exten-sion from dorsal root ganglia.48 Previous in-vitro studies have 
demonstrated improved neural cell survival and neurotrophic factors upregulation in Schwann cells 
associated with chitosan.49,50 Several in vivo studies have demon- 
 
strated the use of chitosan conduits for peripheral nerve regeneration in different animal models,44 

most of which involved different filling materials such as polyglycolic acid filaments or nanofibers. 
 
Rosales-Cortes et al. analyzed the immunological response of a chitosan conduit in sciatic nerve 
regenera-tion of the axotomized sciatic nerve in dogs.51 Results showed that chitosan implants did not 
induce immunostimulation or immunodepression. Another study conducted  by  Matsumoto  et  al.  
investigated  chitosan mesh tubes (C-tubes) in regenerating transected thoracic sympathetic nerve (n 5 
3) and phrenic nerve (n 5 3) in beagle dogs and concluded that C-tubes can facilitate the 
regeneration of damaged sympathetic and phrenic nerves and restore lost functions.52  Patel et al. 
evaluated functional recovery of sciatic nerves in rats repaired with chi- 
tosan nerve guide using video assisted gait analysis.53 Other  outcome  measurements  included  
histology  and muscle  weight.  The  authors  concluded  that  based  on video-gait  analysis,  histology  
and  muscle  weight improved functional recovery was seen as a result of the use of chitosan nerve 
guides. Finally, a recent study by Gonzalez-Perez et al. showed that chitosan tubes may permit  
regeneration  also for longer gap in  the rat model.54     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Gastrocnemius muscle weight in grams as measured 90 days after surgery: Right - intact limb; Left - operated 
limb. 

 
 
 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Light microscopy images of nerve sections stained with Toluidine Blue. A: Transverse section of the distal part 

of the repaired nerve with nerve autograft. B: Transverse section of the distal part of the repaired nerve with chitosan 

conduit.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7. Histograms showing the results of morphometrical evaluation of nerve regeneration (A, number of myelinated 

fiber in the distal part of the sciatic nerve; B, fibers diameter, myelin thickness and g-ratio) in autograft and chitosan 

group. Data are represented as mean-6 standard deviation. 
 
Two clinical case reports utilizing chitosan tube for reconstruction of the median nerve were 
published.55,56  Fan et al. described repair of a 3.5-cm long median nerve defect  at  the  elbow  
using  chitosan/polyglycolic  acid nerve conduit.55 The same group reported again on repair of a 3-
cm long median nerve defect in the distal forearm using the same nerve conduit.56 In both cases, 
three years 
later, improvement in motor and sensory function was noted. These two case reports do not add 
significant evidence to support routine clinical use of chitosan tubes due to the scientific limitation of 
these studies. 
In the current study, we evaluate functional recovery and histomorphometrical outcome of chitosan 
tube reconstruction  versus  autograft  repair  and  this  is  the  first experimental study where imaging 
study was utilized in order  to  demonstrate  the  relationship  between  the implanted  tube  and  
regenerating  tissue  during  the observational period. In vivo real-time imaging allows assessment of 
the physical properties of the implanted material, including tube detachment, collapse of the scaf-fold 
and external compression. 
 
In this study, it has been demonstrated that after 90 days, functional and electrophysiological 
outcomes were comparable between the chitosan tube reconstruction group and autologous nerve 
graft group. Muscle weight assessment and histomorphometry also demonstrated comparable results 
in the two groups with similar axon numbers and myelin thickness. Ultrasonography of the chitosan 



tube during the observational period did not identify detachment of the tube and neural stumps, nor 
external tissue compression or collapse. Nerve growth inside the tube was identified after 90 days. 
 
Real-time imaging utilizing ultrasonography is under-used in the experimental environment 
considering its added value for evaluating the relationship of the recon-structed nerve and surrounding 
tissue, and its relative availability. 
 
 
CONCLUSION 
 
This study evaluated nerve regeneration through chi-tosan tube versus autologous nerve graft and 
found no statistically significant difference. Peripheral nerve recon-struction of the sciatic nerve in 
rats using chitosan hol-low tubes is comparable with gold standard autologous nerve graft, with the 
inherent potential of treating large nerve gaps and also functioning as a scaffold for filling material 
which may support nerve regeneration. 
 
Further study, currently being performed, will focus on nerve regeneration utilizing chitosan tube with 
differ-ent filling materials. 
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