14 research outputs found

    Improved Differentiation of Mesenchymal Stem Cells into Hepatocyte-like Cells using FGF4 and IGF-1 in 3D Culture

    Get PDF
    Human Umbilical Cord Mesenchymal Stem Cells (UCMSCs) are considered as an excellent candidate for cell therapy to treat end-stage liver disease. Fibroblast Growth Factor-4 (FGF4), Hepatocyte Growth Factor, and Insulin-like Growth Factor-1 are some of the critical cytokines involved in liver development and regeneration. To evaluate the differentiation potency of cells into hepatocyte-like cells we used these cytokines. UCMSCs were isolated from Wharton's jelly of fullterm infants. The cells were characterized as MSCs by flow-cytometry and their multilineage differentiation capacity. Then, UCMSCs were cultured in 3D collagen scaffold and hepatogenic media with or without FGF4 for 21 days and the data were compared to control. The expression of liver specific genes was evaluated by real-time quantitative RT-PCR and immunocytochemistry. These cells expressed MSC markers and could differentiate into adipocytes and osteocytes. A non–significant higher level of liver specific genes, such as cytokeratin-18 and 19, alpha-fetoprotein and albumin, and also a significant higher level of CYP2B6 expressed by UCMSCs in hepatogenic medium containing FGF4 compared with control. In some specimens, cytokeratin-19-positive cells surrounded a luminal space within collagen scaffolds. Liver-specific marker expression was increased by pre-exposing the cells to FGF4 before treating with IGF-1 and HGF in 3D collagen scaffold. Abbreviations: UCMSCs: Human Umbilical Cord Mesenchymal Stem Cells; FGF4: Fibroblast Growth Factor 4; HGF: Hepatocyte Growth Factor; IGF-1: Insulin-like Growth Factor-1; MSCs: Mesenchymal Stem Cells; ICG: Indocyanine green; PAS: periodic acid Schiff; CK-18: cytokeratin-18; CK-19: Cytokeratin-19; AFP: alpha-fetoprotein; G6P: glucose 6 phosphatase; PEPCK: phosphoenolpyruvate carboxykinase; TAT: tyrosine amino transferase; FBS: Fetal Bovine Serum; OSM: oncostatin M; RT-PCR: Reverse Transcription Polymerase Chain Reaction; PBS: Phosphate-Buffered Saline; Hep- Par1: Hepatocyte paraffin 1; DAB: Diaminobenzidine; CYP2B6: Cytochrome P450 2B6

    The effects of metformin on ovum implantation and pregnancy outcome in rats with induced PCOS

    No full text
    "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Polycystic ovary syndrome (PCOS) is the most common cause of anovulatory infertility. Metformin which is effectively used for the treatment of anovulatory PCOS improves pregnancy rate and endometrial receptivity and reduces the risk of miscarriage. The aim of this study was to evaluate the effects of metformin on the endometrium, the number of fetuses and hormonal levels of PCOS rats."n"nMethods: Forty female adult Sprague-Dawley rats were assigned randomly into four equal groups. Group I: control rats, group II: rats receiving metformin (150 mg/kg/day), group III: Estradiol Valerate-induced PCOS rats (4 mg/rat) and group IV: induced PCOS rats receiving metformin. Body weight and serum levels of glucose, LH, FSH, testosterone, progesterone and estradiol were measured. Following mating, each group was divided into two subgroups and the rats were sacrificed on the 5th and 15th day of gestation to evaluate endometrial reaction to implantation and fetus count, respectively."n"nResults: Hormone assay showed a significant increase in testosterone, estradiol, LH, FSH and blood glucose levels in group III compared to the controls (P≤0.01) and a significant decrease in blood glucose in group IV versus group III (P≤0.01). Progesterone concentration had no significant differences between groups III and the controls. Weight was higher in group III than group I but it had no decrease after metformin administration. No significant differences were detected regarding implantation rate and number of fetuses in all rats."n"nConclusion: Metformin has significant effects on pregnancy rate and the hormonal and blood glucose levels of Estradiol Valerate-induced PCOS rats

    Electromagnetic Fields of Mobile Phone Jammer Exposure on Blood Factors in Rats

    No full text
    Background: The increasing demand for using mobile phones has led to increasing mobile phone jammers as well. On the other hand, reports show that exposure to electromagnetic field causes an increase in the incidence of diseases such as leukemia, cancer, depression and failure in pregnancy outcomes; therefore, the aim of this study is to investigate the effects of exposure to electromagnetic fields of mobile phone jammers on blood factors. Materials and Methods: Thirty male Wistar immature and thirty mature rats were selected randomly and each one was divided into three groups of ten. The control group did not receive any radiation; the sham group was exposed to a switched-off jammer device and the experimental group was exposed to electromagnetic fields (EMF) radiated by Mobile Phone Jammer daily eight hours for five days a week during forty days. Blood sample was taken from heart and blood factors including PLT, MCHC and RDWCV were measured. The data were analyzed by ANOVA which was followed by Duncan’s test. Results: The data from mature rats revealed that jammer usage led to a significant difference in blood factors including RBC, platelet, hemoglobin, hematocrit, MCV and RDWCV (P≤0.05); however, the number of lymphocytes, WBC and MCVH in the blood was the same in all groups. In immature rats, the exposure to jammer did not change RBC, lymphocyte and WBC count, hemoglobin and hematocrit; while, the platelet count along with MCHC, MVC and RDWCV changed by jammer radiation. Conclusion: The results exhibited that mobile phone jammer caused frequent changes in blood cell factors

    Cytotoxicity assessment of adipose-derived mesenchymal stem cells on synthesized biodegradable Mg-Zn-Ca alloys

    No full text
    Magnesium (Mg)-based alloys have been extensively considered as biodegradable implant materials for orthopedic surgery. Mg and its alloys are metallic biomaterials that can degrade in the body and promote new bone formation. In this study, the corrosion behavior and cytotoxicity of Mg-Zn-Ca alloys are evaluated with adipose-derived mesenchymal stem cells (ASCs). Mg-2Zn and Mg-2Zn-xCa (x = 1, 2 and 3 wt.) alloys were designated. Mg alloys were analyzed with scanning electron microscopy and potentiodynamic polarization. To understand the in-vitro biocompatibility and cytotoxicity of Mg-2Zn and Mg-2Zn-xCa alloys, ASCs were cultured for 24 and 72 h in contact with 10, 50 and 100 extraction of all alloys prepared in DMEM. Cell cytotoxicity and viability of ASCs were examined by MTT assay. Alloying elements including Zn and Ca improved the corrosion resistance of alloys were compared with pure Mg. The cytotoxicity results showed that all alloys had no significant adverse effects on cell viability in 24 h. After 72 h, cell viability and proliferation increased in the cells exposed to pure Mg and Mg-2Zn-1Ca extracts. The release of Mg, Zn and Ca ions in culture media had no toxic impacts on ASCs viability and proliferation. Mg-2Zn-1Ca alloy can be suggested as a good candidate to be used in biomedical applications. © 2016 Elsevier B.V

    Improved Differentiation of Mesenchymal Stem Cells into Hepatocyte-like Cells using FGF4 and IGF-1 in 3D Culture

    No full text
    Human Umbilical Cord Mesenchymal Stem Cells (UCMSCs) are considered as an excellent candidate for cell therapy to treat end-stage liver disease. Fibroblast Growth Factor-4 (FGF4), Hepatocyte Growth Factor, and Insulin-like Growth Factor-1 are some of the critical cytokines involved in liver development and regeneration. To evaluate the differentiation potency of cells into hepatocyte-like cells we used these cytokines. UCMSCs were isolated from Wharton's jelly of fullterm infants. The cells were characterized as MSCs by flow-cytometry and their multilineage differentiation capacity. Then, UCMSCs were cultured in 3D collagen scaffold and hepatogenic media with or without FGF4 for 21 days and the data were compared to control. The expression of liver specific genes was evaluated by real-time quantitative RT-PCR and immunocytochemistry. These cells expressed MSC markers and could differentiate into adipocytes and osteocytes. A non–significant higher level of liver specific genes, such as cytokeratin-18 and 19, alpha-fetoprotein and albumin, and also a significant higher level of CYP2B6 expressed by UCMSCs in hepatogenic medium containing FGF4 compared with control. In some specimens, cytokeratin-19-positive cells surrounded a luminal space within collagen scaffolds. Liver-specific marker expression was increased by pre-exposing the cells to FGF4 before treating with IGF-1 and HGF in 3D collagen scaffold
    corecore