131 research outputs found

    Selective amplification of Brucella melitensis mRNA from a mixed host-pathogen total RNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brucellosis is a worldwide anthropozoonotic disease caused by an in vivo intracellular pathogen belonging to genus <it>Brucella</it>. The characterization of brucelae transcriptome's during host-pathogen interaction has been limited due to the difficulty of obtaining an adequate quantity of good quality eukaryotic RNA-free pathogen RNA for downstream applications.</p> <p>Findings</p> <p>Here, we describe a combined protocol to prepare RNA from intracellular <it>B. melitensis </it>in a quantity and quality suitable for pathogen gene expression analysis. Initially, <it>B. melitensis </it>total RNA was enriched from a host:pathogen mixed RNA sample by reducing the eukaryotic RNA..Then, to increase the <it>Brucella </it>RNA concentration and simultaneously minimize the contaminated host RNA in the mixed sample, a specific primer set designed to anneal to all <it>B. melitensis </it>ORF allows the selective linear amplification of sense-strand prokaryotic transcripts in a previously enriched RNA sample.</p> <p>Conclusion</p> <p>The novelty of the method we present here allows analysis of the gene expression profile of <it>B. melitensis </it>when limited amounts of pathogen RNA are present, and is potentially applicable to both <it>in vivo </it>and <it>in vitro </it>models of infection, even at early infection time points.</p

    Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages

    Get PDF
    This study provides the proof of principle that probing the host and the microbe transcriptomes simultaneously is a valuable means to accessing unique information on host pathogen interactions. Our results also underline the extraordinary plasticity of host cell and pathogen responses to infection, and provide a solid framework to further understand the complex mechanisms involved in immunity to M. tuberculosis and in mycobacterial adaptation to different intracellular environments

    Genome-Wide Analysis of the Emerging Infection with Mycobacterium avium Subspecies paratuberculosis in the Arabian Camels (Camelus dromedarius)

    Get PDF
    Mycobacterium avium subspecies paratuberculosis (M. ap) is the causative agent of paratuberculosis or Johne's disease (JD) in herbivores with potential involvement in cases of Crohn's disease in humans. JD is spread worldwide and is economically important for both beef and dairy industries. Generally, pathogenic ovine strains (M. ap-S) are mainly found in sheep while bovine strains (M. ap-C) infect other ruminants (e.g. cattle, goat, deer), as well as sheep. In an effort to characterize this emerging infection in dromedary/Arabian camels, we successfully cultured M. ap from several samples collected from infected camels suffering from chronic, intermittent diarrhea suggestive of JD. Gene-based typing of isolates indicated that all isolates belong to sheep lineage of strains of M. ap (M. ap-S), suggesting a putative transmission from infected sheep herds. Screening sheep and goat herds associated with camels identified the circulation of this type in sheep but not goats. The current genome-wide analysis recognizes these camel isolates as a sub-lineage of the sheep strain with a significant number of single nucleotide polymorphisms (SNPs) between sheep and camel isolates (∼1000 SNPs). Such polymorphism could represent geographical differences among isolates or host adaptation of M. ap during camel infection. To our knowledge, this is the first attempt to examine the genomic basis of this emerging infection in camels with implications on the evolution of this important pathogen. The sequenced genomes of M. ap isolates from camels will further assist our efforts to understand JD pathogenesis and the dynamic of disease transmission across animal species

    Elucidation of the Dual Role of Mycobacterial MoeZR in Molybdenum Cofactor Biosynthesis and Cysteine Biosynthesis

    Get PDF
    The pathway of molybdenum cofactor biosynthesis has been studied in detail by using proteins from Mycobacterium species, which contain several homologs associated with the first steps of Moco biosynthesis. While all Mycobacteria species contain a MoeZR, only some strains have acquired an additional homolog, MoeBR, by horizontal gene transfer. The role of MoeBR and MoeZR was studied in detail for the interaction with the two MoaD-homologs involved in Moco biosynthesis, MoaD1 and MoaD2, in addition to the CysO protein involved in cysteine biosynthesis. We show that both proteins have a role in Moco biosynthesis, while only MoeZR, but not MoeBR, has an additional role in cysteine biosynthesis. MoeZR and MoeBR were able to complement an E. coli moeB mutant strain, but only in conjunction with the Mycobacterial MoaD1 or MoaD2 proteins. Both proteins were able to sulfurate MoaD1 and MoaD2 in vivo, while only MoeZR additionally transferred the sulfur to CysO. Our in vivo studies show that Mycobacteria have acquired several homologs to maintain Moco biosynthesis. MoeZR has a dual role in Moco- and cysteine biosynthesis and is involved in the sulfuration of MoaD and CysO, whereas MoeBR only has a role in Moco biosynthesis, which is not an essential function for Mycobacteria

    Parenteral Medication Prescriptions, Dispensing and Administration Habits in Mongolia

    Get PDF
    High levels of injection prescribing were reported in Mongolia. Understanding the factors influencing the injection prescribing is essential to reduce their inappropriate use. The study evaluated the views, experiences and attitudes of community members associated with the prescribing of injections in Mongolia. A structured questionnaire focusing on respondents’ characteristics, experiences and views about injections was developed and administered face-to-face to community members in Ulaanbaatar, Mongolia. Standard descriptive statistics were used to summarize demographic data and responses to the questionnaires. Dependant variables were compared using Kruskal-Wallis Tests for independence. Statistical analyses were performed using SPSS Version 21.0. Six hundred participants were approached and the response rate was 79% (n 474). Almost half of the respondents were aged between 31 and 50 (n 228, 48.1%) and 40.9% of respondents were male (n 194). Most respondents were from Ulaanbaatar city (n 407, 85.7%). All respondents had received injections in the past and 268 (56.5%) had received injection in the past year. The most common reason for having an injection in the past year was reported as treatment of a disease (n 163, 60.8%), or for administration of vitamins (n 70, 26.1%). Injections were prescribed by a doctor (n 353, 74.9%), dispensed by a pharmacist (n 283, 59.7%) and administered by a nurse (n 277, 54.9%). Only 16% of all respondents had the expectation of receiving injections when they visited a doctor (n 77). An important perception regarding injections was that they hastened the recovery process (n 269, 56.8%). When asked their opinion about therapeutic injections, 40% of all respondents agreed that injections were a better medicine (n 190) than oral medications, with older respondents strongly agreeing (p<0.001). Based on this total sample, approximately 1891 injections per 1000 patients were administered. The excessive injection use seems to be promoted by inappropriate prescribing, dispensing and administration of medication by doctors and others

    Differential Producibility Analysis (DPA) of Transcriptomic Data with Metabolic Networks: Deconstructing the Metabolic Response of M. tuberculosis

    Get PDF
    A general paucity of knowledge about the metabolic state of Mycobacterium tuberculosis within the host environment is a major factor impeding development of novel drugs against tuberculosis. Current experimental methods do not allow direct determination of the global metabolic state of a bacterial pathogen in vivo, but the transcriptional activity of all encoded genes has been investigated in numerous microarray studies. We describe a novel algorithm, Differential Producibility Analysis (DPA) that uses a metabolic network to extract metabolic signals from transcriptome data. The method utilizes Flux Balance Analysis (FBA) to identify the set of genes that affect the ability to produce each metabolite in the network. Subsequently, Rank Product Analysis is used to identify those metabolites predicted to be most affected by a transcriptional signal. We first apply DPA to investigate the metabolic response of E. coli to both anaerobic growth and inactivation of the FNR global regulator. DPA successfully extracts metabolic signals that correspond to experimental data and provides novel metabolic insights. We next apply DPA to investigate the metabolic response of M. tuberculosis to the macrophage environment, human sputum and a range of in vitro environmental perturbations. The analysis revealed a previously unrecognized feature of the response of M. tuberculosis to the macrophage environment: a down-regulation of genes influencing metabolites in central metabolism and concomitant up-regulation of genes that influence synthesis of cell wall components and virulence factors. DPA suggests that a significant feature of the response of the tubercle bacillus to the intracellular environment is a channeling of resources towards remodeling of its cell envelope, possibly in preparation for attack by host defenses. DPA may be used to unravel the mechanisms of virulence and persistence of M. tuberculosis and other pathogens and may have general application for extracting metabolic signals from other “-omics” data

    LAL Regulators SCO0877 and SCO7173 as Pleiotropic Modulators of Phosphate Starvation Response and Actinorhodin Biosynthesis in Streptomyces coelicolor

    Get PDF
    LAL regulators (Large ATP-binding regulators of the LuxR family) constitute a poorly studied family of transcriptional regulators. Several regulators of this class have been identified in antibiotic and other secondary metabolite gene clusters from actinomycetes, thus they have been considered pathway-specific regulators. In this study we have obtained two disruption mutants of LAL genes from S. coelicolor (Δ0877 and Δ7173). Both mutants were deficient in the production of the polyketide antibiotic actinorhodin, and antibiotic production was restored upon gene complementation of the mutants. The use of whole-genome DNA microarrays and quantitative PCRs enabled the analysis of the transcriptome of both mutants in comparison with the wild type. Our results indicate that the LAL regulators under study act globally affecting various cellular processes, and amongst them the phosphate starvation response and the biosynthesis of the blue-pigmented antibiotic actinorhodin. Both regulators act as negative modulators of the expression of the two-component phoRP system and as positive regulators of actinorhodin biosynthesis. To our knowledge this is the first characterization of LAL regulators with wide implications in Streptomyces metabolism

    The Two-Domain LysX Protein of Mycobacterium tuberculosis Is Required for Production of Lysinylated Phosphatidylglycerol and Resistance to Cationic Antimicrobial Peptides

    Get PDF
    The well-recognized phospholipids (PLs) of Mycobacterium tuberculosis (Mtb) include several acidic species such as phosphatidylglycerol (PG), cardiolipin, phosphatidylinositol and its mannoside derivatives, in addition to a single basic species, phosphatidylethanolamine. Here we demonstrate that an additional basic PL, lysinylated PG (L-PG), is a component of the PLs of Mtb H37Rv and that the lysX gene encoding the two-domain lysyl-transferase (mprF)-lysyl-tRNA synthetase (lysU) protein is responsible for L-PG production. The Mtb lysX mutant is sensitive to cationic antibiotics and peptides, shows increased association with lysosome-associated membrane protein–positive vesicles, and it exhibits altered membrane potential compared to wild type. A lysX complementing strain expressing the intact lysX gene, but not one expressing mprF alone, restored the production of L-PG and rescued the lysX mutant phenotypes, indicating that the expression of both proteins is required for LysX function. The lysX mutant also showed defective growth in mouse and guinea pig lungs and showed reduced pathology relative to wild type, indicating that LysX activity is required for full virulence. Together, our results suggest that LysX-mediated production of L-PG is necessary for the maintenance of optimal membrane integrity and for survival of the pathogen upon infection

    18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells

    Get PDF
    Background: One requisite of quantitative reverse transcription PCR (qRT-PCR) is to normalise the data with an internal reference gene that is invariant regardless of treatment, such as virus infection. Several studies have found variability in the expression of commonly used housekeeping genes, such as beta-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), under different experimental settings. However, ACTB and GAPDH remain widely used in the studies of host gene response to virus infections, including influenza viruses. To date no detailed study has been described that compares the suitability of commonly used housekeeping genes in influenza virus infections. The present study evaluated several commonly used housekeeping genes [ACTB, GAPDH, 18S ribosomal RNA (18S rRNA), ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide (ATP5B) and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) (ATP5G1)] to identify the most stably expressed gene in human, pig, chicken and duck cells infected with a range of influenza A virus subtypes. Results: The relative expression stability of commonly used housekeeping genes were determined in primary human bronchial epithelial cells (HBECs), pig tracheal epithelial cells (PTECs), and chicken and duck primary lung-derived cells infected with five influenza A virus subtypes. Analysis of qRT-PCR data from virus and mock infected cells using NormFinder and BestKeeper software programmes found that 18S rRNA was the most stable gene in HBECs, PTECs and avian lung cells. Conclusions: Based on the presented data from cell culture models (HBECs, PTECs, chicken and duck lung cells) infected with a range of influenza viruses, we found that 18S rRNA is the most stable reference gene for normalising qRT-PCR data. Expression levels of the other housekeeping genes evaluated in this study (including ACTB and GPADH) were highly affected by influenza virus infection and hence are not reliable as reference genes for RNA normalisation

    Novel Two-Component Systems Implied in Antibiotic Production in Streptomyces coelicolor

    Get PDF
    The abundance of two-component systems (TCSs) in Streptomyces coelicolor A3(2) genome indicates their importance in the physiology of this soil bacteria. Currently, several TCSs have been related to antibiotic regulation, and the purpose in this study was the characterization of five TCSs, selected by sequence homology with the well-known absA1A2 system, that could also be associated with this important process. Null mutants of the five TCSs were obtained and two mutants (ΔSCO1744/1745 and ΔSCO4596/4597/4598) showed significant differences in both antibiotic production and morphological differentiation, and have been renamed as abr (antibiotic regulator). No detectable changes in antibiotic production were found in the mutants in the systems that include the ORFs SCO3638/3639, SCO3640/3641 and SCO2165/2166 in any of the culture conditions assayed. The system SCO1744/1745 (AbrA1/A2) was involved in negative regulation of antibiotic production, and acted also as a negative regulator of the morphological differentiation. By contrast, the system SCO4596/4597/4598 (AbrC1/C2/C3), composed of two histidine kinases and one response regulator, had positive effects on both morphological development and antibiotic production. Microarray analyses of the ΔabrC1/C2/C3 and wild-type transcriptomes revealed downregulation of actII-ORF4 and cdaR genes, the actinorhodin and calcium-dependent antibiotic pathway-specific regulators respectively. These results demonstrated the involvement of these new two-component systems in antibiotic production and morphological differentiation by different approaches. One is a pleiotropic negative regulator: abrA1/A2. The other one is a positive regulator composed of three elements, two histidine kinases and one response regulator: abrC1/C2/C3
    corecore