1,570 research outputs found
Estimate of convection-diffusion coefficients from modulated perturbative experiments as an inverse problem
The estimate of coefficients of the Convection-Diffusion Equation (CDE) from
experimental measurements belongs in the category of inverse problems, which
are known to come with issues of ill-conditioning or singularity. Here we
concentrate on a particular class that can be reduced to a linear algebraic
problem, with explicit solution. Ill-conditioning of the problem corresponds to
the vanishing of one eigenvalue of the matrix to be inverted. The comparison
with algorithms based upon matching experimental data against numerical
integration of the CDE sheds light on the accuracy of the parameter estimation
procedures, and suggests a path for a more precise assessment of the profiles
and of the related uncertainty. Several instances of the implementation of the
algorithm to real data are presented.Comment: Extended version of an invited talk presented at the 2012 EPS
Conference. To appear in Plasma Physics and Controlled Fusio
An Integrative, Multiparametric Approach for the Comprehensive Assessment of Microbial Quality and Pollution in Aquaculture Systems
As the aquaculture sector significantly expanded worldwide in the past decades, the concept of sustainable aquaculture has developed with the challenge of not only maximizing benefits but also minimizing the negative impacts on the environment assuring, at the same time, food security. In this framework, monitoring and improving the microbiological water quality and animal health are a central topic. In the present study, we evaluated the seawater microbiological quality in a mariculture system located in a Mediterranean coastal area (Northern Ionian Sea, Italy). We furnished, for the first time, a microbial inventory based on conventional culture-based methods, integrated with the 16S rRNA gene metabarcoding approach for vibrios identification and diversity analyses, and further implemented with microbial metabolic profiling data obtained from the Biolog EcoPlate system. Microbiological pollution indicators, vibrios diversity, and microbial metabolism were determined in two different times of the year (July and December). All microbial parameters measured in July were markedly increased compared to those measured in December. The presence of potentially pathogenic vibrios is discussed concerning the risk of fish disease and human infections. Thus, the microbial inventory here proposed might represent a new multiparametric approach for the suitable surveillance of the microbial quality in a mariculture system. Consequently, it could be useful for ensuring the safety of both the reared species and the consumers in the light of sustainable, eco-friendly aquaculture management
Precision stellar radial velocity measurements with FIDEOS at the ESO 1-m telescope of La Silla
We present results from the commissioning and early science programs of
FIDEOS, the new high-resolution echelle spectrograph developed at the Centre of
Astro Engineering of Pontificia Universidad Catolica de Chile, and recently
installed at the ESO 1m telescope of La Silla. The instrument provides spectral
resolution R = 43,000 in the visible spectral range 420-800 nm, reaching a
limiting magnitude of 11 in V band. Precision in the measurement of radial
velocity is guaranteed by light feeding with an octagonal optical fibre,
suitable mechanical isolation, thermal stabilisation, and simultaneous
wavelength calibration. Currently the instrument reaches radial velocity
stability of = 8 m/s over several consecutive nights of observation
ARED 3.0: the large and diverse AU-rich transcriptome
A comprehensive search that utilized a large set of mRNA data from human genome databases and additionally, expressed sequence tag (EST) database characterized this latest update of AU-rich elements (AREs) containing mRNA database (ARED). A large number of ARE-mRNA, as much as 4000, were recovered and include many of ARE alternative forms. This number represents as much as 5–8% of the human genes depending on the entire number of genes. The new ARED does not contain only larger and diverse number of ARE-mRNAs but additional functionality and enhanced search capabilities are given in the database website . These include class and cluster of AREs, source mRNAs, EST evidence, buildup information, retrieval of lists of genes, and integration with current and new NCBI data, such as Entrez ID and Unigene. Gene Ontology analysis shows there are significant differences in functional diversity of ARED when compared with the overall genome. Many of ARE-genes mediate regulatory processes, reactions to outside stimuli, RNA metabolism, and developmental processes particularly those of early and transient responses. The wide interest in mRNA turnover and importance of AREs in health and disease signify the compilation of ARE-genes
Ecophysiology of seedlings of three Mediterranean pine species in contrasting light regimes
Seasonal dynamics of net photosynthesis (Anet) in 2-year-old seedlings of Pinus brutia Ten., Pinus pinea L. and Pinus pinaster Ait. were investigated. Seedlings were grown in the field in two light regimes: sun (ambient light) and shade (25% of photosynthetically active radiation (PAR)). Repeated measures analyses over a 12-month period showed that Anet varied significantly among species and from season to season. Maximum Anet in sun-acclimated seedlings was low in winter (yet remained positive) and peaked during summer. Maximum Anet was observed in June in P. pinea (12 μmol m–2 s–1), July in P. pinaster (23 μmol m–2 s–1) and August in P. brutia (20 μmol m–2 s–1). Photosynthetic light response curves saturated at a PAR of 200–300 μmol m–2 s–1 in winter and in shade-acclimated seedlings in summer. Net photosynthesis in sun-acclimated seedlings did not saturate at PAR up to 1900 μmol m–2 s–1 in P. brutia and P. pinaster. Minimum air temperature of the preceding night was apparently one of the main factors controlling Anet during the day. In shade-acclimated seedlings, photosynthetic rates were reduced by 50% in P. brutia and P. pinaster and by 20% in P. pinea compared with those in sun-acclimated seedlings. Stomatal conductance was generally lower in shaded seedlings than in seedlings grown in the sun, except on days with a high vapor pressure deficit. Total chlorophyll concentration per unit leaf area, specific leaf area (SLA) and height significantly increased in P. pinea in response to shade, but not in P. pinaster or P. brutia. In response to shade, P. brutia showed a significant increase in total chlorophyll concentration but not SLA. Photosynthetic and growth data indicate that P. pinaster and P. brutia are more light-demanding than P. pinea
Ecophysiology of seedlings of three Mediterranean pine species in contrasting light regimes
Seasonal dynamics of net photosynthesis (Anet) in 2-year-old seedlings of Pinus brutia Ten., Pinus pinea L. and Pinus pinaster Ait. were investigated. Seedlings were grown in the field in two light regimes: sun (ambient light) and shade (25% of photosynthetically active radiation (PAR)). Repeated measures analyses over a 12-month period showed that Anet varied significantly among species and from season to season. Maximum Anet in sun-acclimated seedlings was low in winter (yet remained positive) and peaked during summer. Maximum Anet was observed in June in P. pinea (12 μmol m–2 s–1), July in P. pinaster (23 μmol m–2 s–1) and August in P. brutia (20 μmol m–2 s–1). Photosynthetic light response curves saturated at a PAR of 200–300 μmol m–2 s–1 in winter and in shade-acclimated seedlings in summer. Net photosynthesis in sun-acclimated seedlings did not saturate at PAR up to 1900 μmol m–2 s–1 in P. brutia and P. pinaster. Minimum air temperature of the preceding night was apparently one of the main factors controlling Anet during the day. In shade-acclimated seedlings, photosynthetic rates were reduced by 50% in P. brutia and P. pinaster and by 20% in P. pinea compared with those in sun-acclimated seedlings. Stomatal conductance was generally lower in shaded seedlings than in seedlings grown in the sun, except on days with a high vapor pressure deficit. Total chlorophyll concentration per unit leaf area, specific leaf area (SLA) and height significantly increased in P. pinea in response to shade, but not in P. pinaster or P. brutia. In response to shade, P. brutia showed a significant increase in total chlorophyll concentration but not SLA. Photosynthetic and growth data indicate that P. pinaster and P. brutia are more light-demanding than P. pinea
Potential human and plant pathogenic species in airborne pm10 samples and relationships with chemical components and meteorological parameters
A preliminary local database of potential (opportunistic) airborne human and plant pathogenic and non-pathogenic species detected in PM10 samples collected in winter and spring is provided, in addition to their seasonal dependence and relationships with meteorological parameters and PM10 chemical species. The PM10 samples, collected at a Central Mediterranean coastal site, were analyzed by the 16S rRNA gene metabarcoding approach, and Spearman correlation coefficients and redundancy discriminant analysis tri-plots were used to investigate the main relationships. The screening of 1187 detected species allowed for the detection of 76 and 27 potential (opportunistic) human and plant pathogens, respectively. The bacterial structure of both pathogenic and non-pathogenic species varied from winter to spring and, consequently, the inter-species relationships among potential human pathogens, plant pathogens, and non-pathogenic species varied from winter to spring. Few non-pathogenic species and even fewer potential human pathogens were significantly correlated with meteorological parameters, according to the Spearman correlation coefficients. Conversely, several potential plant pathogens were strongly and positively correlated with temperature and wind speed and direction both in winter and in spring. The number of strong relationships between presumptive (human and plant) pathogens and non-pathogens, and meteorological parameters slightly increased from winter to spring. The sample chemical composition also varied from winter to spring. Some potential human and plant pathogens were correlated with chemicals mainly associated with marine aerosol and/or with soil dust, likely because terrestrial and aquatic environments were the main habitats of the detected bacterial species. The carrier role on the species seasonal variability was also investigated
- …