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Abstract: A preliminary local database of potential (opportunistic) airborne human and plant
pathogenic and non-pathogenic species detected in PM10 samples collected in winter and spring is
provided, in addition to their seasonal dependence and relationships with meteorological parameters
and PM10 chemical species. The PM10 samples, collected at a Central Mediterranean coastal site,
were analyzed by the 16S rRNA gene metabarcoding approach, and Spearman correlation coefficients
and redundancy discriminant analysis tri-plots were used to investigate the main relationships. The
screening of 1187 detected species allowed for the detection of 76 and 27 potential (opportunistic)
human and plant pathogens, respectively. The bacterial structure of both pathogenic and non-
pathogenic species varied from winter to spring and, consequently, the inter-species relationships
among potential human pathogens, plant pathogens, and non-pathogenic species varied from winter
to spring. Few non-pathogenic species and even fewer potential human pathogens were significantly
correlated with meteorological parameters, according to the Spearman correlation coefficients. Con-
versely, several potential plant pathogens were strongly and positively correlated with temperature
and wind speed and direction both in winter and in spring. The number of strong relationships
between presumptive (human and plant) pathogens and non-pathogens, and meteorological pa-
rameters slightly increased from winter to spring. The sample chemical composition also varied
from winter to spring. Some potential human and plant pathogens were correlated with chemicals
mainly associated with marine aerosol and/or with soil dust, likely because terrestrial and aquatic
environments were the main habitats of the detected bacterial species. The carrier role on the species
seasonal variability was also investigated.

Keywords: airborne human pathogens; airborne plant pathogens; PM10 chemical components;
meteorological parameters; Spearman correlation coefficients; redundancy discriminant analysis

1. Introduction

Natural and anthropogenic air pollution consists of complex mixtures of chemical and
biochemical species as well as airborne pathogens. Therefore, in addition to the human
health risks posed by fine aerosol particles, bioaerosols can also influence public health
and ecological systems [1,2], since biological airborne contaminants (or bioaerosols) like
bacteria, viruses, and fungi are usually transported by aerosols [3–5]. Potential pathogenic
bacteria are of considerable interest since they can spread and induce diseases [6,7]. The
most recent assessment has found that communicable diseases have been directly respon-
sible for nearly nine million deaths in 2013, about 16% of the total [2]. The atmosphere
can also represent a relevant vector for the rapid diffusion of plant diseases. The airborne
transport of bioaerosols over long distances depends on many factors like reproductive
rate, atmospheric turbulence and stability, survival of microbial species during exposure to
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extreme values of temperature, humidity, and wind speed (e.g., [8]). Airborne pathogens
have not been as well characterized as the organisms present in soil and aquatic environ-
ments [3]. Risk assessment models simulating the pathogen dispersion must be modified
according to [9] by improving their knowledge from experimental measurements. The
current progress in airborne metagenomics has offered a unique opportunity to analyze
bacterial and viral diversity in the air and monitor their spread locally or across the globe,
since bio-surveillance activities should be promoted by national strategies to prevent the
dissemination of pathogenic biological agents [3].

In this study, high-throughput sequencing of the 16SrRNA gene was applied to the
DNA extracted from airborne PM10 samples, with the main goal of detecting potential
(opportunistic) pathogenic bacterial species for humans and plants, in addition to non-
pathogenic bacterial species. More specifically, this work aims to provide a preliminary
local dataset of potential (opportunistic) human and plant pathogenic bacterial species
at a coastal site representative of the central Mediterranean. The Mediterranean Basin is
significantly affected by the long-range transport of particles of anthropogenic and/or
natural origin from surrounding countries [10]. Moreover, the physiographic character-
istics of the Mediterranean Basin and the prevailing climate conditions are responsible
for the development of atmospheric flow patterns, leading to a climate profile roughly
characterized by both cold and warm periods [11]. Previous studies have proven that the
main PM chemical components [12–14] and bacterial phyla and genera [15,16] vary from
the cold to warm season at the study site. Romano et al. [15] reported preliminary data on
the presumptive presence of potential (opportunistic) human pathogenic bacteria in the
PM10 samples of this study. They used a non-metric multi-dimensional scaling (NMDS)
ordination plot to show the likely seasonal impact on the human pathogen variability.

Potential (opportunistic) human and plant pathogenic species, in addition to non-
pathogenic species, detected both in winter and in spring samples, were analyzed in
more detail in this study. The main objective was to provide a winter- and spring-local
database, which also takes into account the carrier role on the bacterial species variability.
The redundancy discriminant analysis (RDA) and Spearman’s rank-order correlation
coefficients were used to analyze and discuss inter-species relationships among potential
pathogens and non-pathogenic species, in addition to their relations with PM10 chemical
components (and related pollution sources) and meteorological parameters.

2. Materials and Methods
2.1. Monitoring Site Location and PM10 Sample Collection

The study site is located in a suburban area (40.3◦ N; 18.1◦ E) of the flat Salento
Peninsula (Figure S1). It is away from large pollution sources and may be considered
representative of coastal sites of the central Mediterranean [17]. The PM10 samples were
collected on the roof (~10 m above ground level) of the Mathematics and Physics De-
partment of the University of Salento. Different low volume PM samplers operating
at 2.3 m3 h−1 were used to simultaneously collect PM10 particles on PTFE (polytetra-
fluoroethylene; TEFLO W/RING 2 µm from VWR International S.R.L) and preheated
quartz filters (PALLFLEX, Tissuquartz), which were used for the recovery of bacteria and
chemical species, respectively. The PTFE and Tissuquartz filters were conditioned for 48 h
(25 ◦C and 50% humidity) before and after sampling and PM10 mass concentrations were
determined by the gravimetric method. Each filter was located in a sterilized box and
stored at −20 ◦C before use to avoid changes in the PM chemical properties and bacteria
growth, highly reduced at such temperatures [18]. Filters were not subjected to sampling,
but handled and stored in the same way as the sampled filters and were used as negative
control filters.

2.2. Ions, Metals, and Organic and Elemental Carbon Analyses

Loaded and blank PM10 filters were subjected to different analyses to characterize
their chemical composition. Anion (Cl−, NO3

−, SO4
2−, and MS−) and cation (Na+, NH4

+,
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and Mg2+) mass concentrations were determined on quartz filters by flow analysis ion
chromatography (FA-IC) [19]. A Sunset Carbon Analyzer Instrument with the EUSAAR-2
temperature program protocol [20] was used to determine organic and elemental carbon
(OC and EC, respectively) mass concentrations on quartz filters. The particle-induced x-ray
emission (PIXE) technique [21] was used to determine the total (soluble and insoluble)
mass concentration of As, Ba, Cd, Cr, Mo, Ni, Pb, V, Al, Si, P, S, K, Ca, Ti, Mn, Fe, Cu, Zn,
Se, Br, Rb, Sr, and Zr in PTFE filters.

2.3. DNA Extraction and 16SrRNA Gene High-Throughput Sequencing

Romano et al. [15,16] provided a comprehensive description of the procedure used for
the recovery of bacteria and debris from the PTFE PM10 samples. The DNeasy PowerSoil
Kit (Qiagen) was used to carry out DNA extraction. Genomix4life S.R.L. (Baronissi, Salerno,
Italy) performed the library preparation and the sequencing of the V3 and V4 regions of the
16S rRNA gene, in addition to the bioinformatics analysis. ClassifyReads, a classifier of the
Ribosomal Database Project (RDP, [22]), allowed the taxonomic grouping of the 16S rRNA
targeted amplicon reads up to the species level. The used classifier was also able to identify
unclassified reads by considering those that did not match a reference sequence [23,24].

2.4. Establishment of Potential Human and Plant Pathogenic Species and Non-Pathogenic Species

The full list of bacterial species detected in the PM10 samples, resulting from the
16S rRNA gene metabarcoding analysis, was screened to obtain a preliminary dataset on
the presumptive presence of potential human and plant pathogens, and non-pathogenic
species. The American Biological Safety Association (ABSA) International database (https:
//my.absa.org/, accessed on 27 April 2021) was used to identify the human pathogenic
species [25,26]. The ABSA database consisted of 693 species, integrated with the oppor-
tunistic Acinetobacter species. The list of plant pathogenic bacteria provided by [27] and
published according to the International Code of Bacteria and the Standards for Nam-
ing Pathovars was used to identify plant pathogens in our 16S rRNA gene-based bacte-
rial species dataset. All the species included neither in the human pathogenic database
nor in the plant pathogenic database were defined as “non-pathogenic species”. The
associations of these last bacterial species with the other living organisms were inves-
tigated using the EID2 (Enhanced Infectious Diseases) web-fronted relational-database
(https://eid2.liverpool.ac.uk/ [2], accessed on 27 April 2021). The EID2 database al-
lowed us to identify the interactions among species including host–pathogen interactions,
commensal (neither beneficial nor costly) or mutualistic (beneficial to both species), or
vector–host interactions. Analogously to the EID2, many other pathogen libraries were de-
fined using the NCBI (National Center for Biotechnology Information) Taxonomy database
(http://www.ncbi.nlm.nih.gov/taxonomy, accessed on 27 April 2021) and the NCBI Nu-
cleotide database (http://www.ncbi.nlm.nih.gov/nuccore, accessed on 27 April 2021). If
compared with pathogen databases at the species levels, the full list of the PM10 bacterial
species, resulting from a metabarcoding analysis, for non-pathogenic species and both for
potential human and plant pathogens, could likely provide only speculation about the
pathogenic abilities of the identified species. However, the deduced local sub-datasets
could be a starting point for setting up a culture-based approach aimed at targeted isolation
of presumptive pathogenic bacterial strains and at in vitro and in vivo virulence analyses.
Liu et al. [5] used the 16SrRNA gene high-throughput sequencing of PM samples to charac-
terize airborne bacteria at Hangzhou (China). They established a new local database of
pathogens for their site, called the “Human Pathogen Database”, which consisted of 74
pathogenic species extracted from the NCBI database, according to [28–31].

2.5. Statistical Methodologies for Data Analysis

The Bray–Curtis dissimilarity indices BCi,j were used to determine the dissimilarity
between two samples denoted by the letters i and j. More specifically, the dissimilarity
among samples with respect to their chemical components, the bacterial species structure,
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the potential (opportunistic) human and plant pathogens, and non-pathogenic species
was also evaluated by means of the BCi,j indices. The PAST (PAleontological STatistics)
software package (Version 4.03; [32]) was used to calculate both BCi,j matrices and non-
parametric Spearman’s rank-order correlation coefficients. Note that we used a non-
parametric statistical method as the Spearman’s correlation test because all the investigated
parameters were not normally-distributed based on the one-sample Kolmogorov–Smirnov
test (according to [33]). The MATLAB software was used to carry out the redundancy
discriminant analysis (RDA; [34]) following the procedure described in [35]. This technique
represents the multivariate extension of a simple linear regression applied to some sets
of variables [36] by using a combination of two datasets: “species data” as response
(or dependent) variables and “environmental variables” as explanatory (or predictive)
variables [37,38]. In particular, in this work, the RDA technique was used to investigate
the relationships between relative abundances of potential (opportunistic) human and
plant pathogens, and non-pathogenic species as “species data” and chemical species mass
concentrations as “environmental variables”. The RDA analysis was applied to the selected
datasets using the Fathom Toolbox by the f_rda and f_rdaPlot functions [39]. Note that
the arrow length and direction in the RDA score plots are strictly related to the variance
that can be explained by the analyzed variables [37]. Stronger correlations between two
parameters involve a greater absolute value of the cosine of the angle between the two
corresponding arrows. Arrows in the same and in the opposite direction suggest a positive
and a negative correlation, respectively, among the corresponding variables [40,41]. We also
compared the accuracy of each performed RDA analysis using the Akaike’s information
criterion (AIC), the small sample-size corrected AIC (AICc), and the Bayesian information
criteria (BIC) [42–45]. These statistical indices were estimated using the f_AIC and f_rdaAIC
functions included in the MATLAB Fathom Toolbox [39].

3. Results and Discussion
3.1. Detection of Potential (Opportunistic) Human and Plant Pathogenic Species and
Non-Pathogenic Species

In our samples, 1738 OTUs (based on a total number of reads equal to 7,317,407 and
with >0.01% within-sample abundance) were identified using a threshold of 97% sequence
similarity [46].Table S1 in the Supplementary Materials lists the sampling date of the
10 investigated winter (a, January–March 2018) and spring (b, May–June 2018) samples,
denoted as S1–S10 and S11–S20, respectively. The PM10 mass concentration and the total
number of operational taxonomic units (OTUs), phyla, orders, genera, and species detected
in each sample were also provided. The listed parameters varied from sample to sample in
winter (Table S1a) and spring (Table S1b) and the number of OTUs, phyla, orders, genera,
and species increased from about twice to more than twice from winter to spring because of
the seasonal impact on the bacterial community structure. The PM10 mass concentrations
varied weakly from winter to spring, likely for the weak seasonal dependence of the
planetary boundary layer height at the study site [12].

Figure S2a,b shows the heat map of all the detected bacterial species in the winter
(S1–S10) and spring (S11–S20) samples, respectively. In total, 1187 species were detected:
133 and 446 species were only detected in winter and spring, respectively. The remaining
608 species were detected in both winter and spring. Seventy-six potential (opportunistic)
human pathogenic species were detected [15]. Corresponding heat maps are shown in
Figure S3a,b for winter and spring, respectively. Seven and 23 human pathogens were
exclusively found in winter and spring, respectively. The screening of the 179 plant
pathogens [27] allowed for the identification of 27 potential (opportunistic) plant pathogens,
whose heat maps are shown in Figure S4a,b for winter and spring, respectively. Four and
10 plant pathogens were exclusively found in winter and spring, respectively. Three plant
pathogens (Clavibacter michiganensis, Curtobacterium flaccumfaciens, and Enterobacter cloacae)
are also classified as human pathogens. We identified 1084 potential non-pathogenic
species (out of 1187; 91%), whose heat maps are shown in Figure S5a,b for winter and



Atmosphere 2021, 12, 654 5 of 19

spring, respectively. A total of 122 and 413 non-pathogens were exclusively found in winter
and spring, respectively.

Figure S6 shows the relative abundance (RA) of potential human and plant pathogens,
non-pathogenic species, and unclassified bacterial species in winter and spring. The per-
centage contribution of unclassified bacterial and non-pathogenic species increases and
decreases, respectively, from winter to spring. Plant- and human-pathogen RAs do not
appear to be significantly affected by the seasons. The RA-based BCi,jdissimilarity indices
were calculated to determine the dissimilarity between the bacterial species components
of the two sampling groups (Table S2a,b). The BCi,j values vary between 0 if two samples
share the same bacterial structure, and 1 if not. The BCi,jvalues with i 6= j varied within
the 0.01–0.51 range in winter samples and 38% of the BCi,j values were ≥0.20. The spring
BCi,jvalues were, on average, smaller than the winter ones: these varied within the 0.01–0.33
range and 18% of the BCi,jvalues were ≥0.20. The greater number of rainy and windy days
occurring in winter than in spring was likely responsible for the high day-by-day variability
of the airborne-bacterial-community in winter. In contrast, the stagnant atmospheric condi-
tions, fostered all over the Mediterranean Basin by the spring meteorological conditions,
likely contributed to the low spring variability of the airborne-bacterial-community [15].
Figure 1 shows the dendrograms based on the RA-BCi,j dissimilarity indices associated
with the relatedness of potential plant and human pathogens, non-pathogenic species, and
unclassified species in (a) the S1–S10 winter and (b) the S11–S20 spring samples. With
the exception of sample S5, the RA of plant pathogens was rather small in all the winter
samples (Figure 1a) and was equal to 0 for S8, where non-pathogenic and unclassified
bacterial species reached the highest and the smallest RA, respectively.

Figure 1. Relative percentage contribution of the overall amount of the 27 potential plant pathogenic
species, 76 potential human pathogenic species, 1084 potential non-pathogenic species, and unclas-
sified species in (a) winter (S1–S10) and (b) spring (S11–S20) samples. Bray–Curtis dissimilarity
dendrograms highlighting the relatedness of the species-level bacterial communities in (a) winter
and (b) spring samples have also been reported.
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Potential plant pathogens were found in all the spring samples (Figure 1b) and their RA
decreased with the increase in human pathogen RAs, suggesting different aerial dispersal
routes and/or sources. The higher plant pathogen abundance from S12 to S18 (Figure 1b)
may be indicative of a seasonal pattern in response to crop cycles. However, the plant
pathogenic potential and tropism of detected species are often associated with specific
subspecies and/or pathovars that could not be defined by our level of analysis.

Human and plant pathogens reached the highest percentage in S5, which was collected
in heavy rain days [15]. Rain can affect the PM bacterial community through washout
and rainout mechanisms, which remove the bacterial species below the cloud base and
in the clouds, respectively. Raindrops clearly scavenge bacteria as they fall, but washout
processes likely contribute more to the diversity than to the total amount of bacteria in cloud
water. This topic has aroused an increasing interest in the scientific community (e.g., [47]).
Ouyang et al. [48] provided useful data to assess the variations in the airborne bacteria and
antibiotic resistance genes in PM2.5 samples before, during, and after rain events.

3.2. Chemical Components and Potential (Opportunistic) Human and Plant Pathogens, and
Non-Pathogenic Species in Winter and Spring Samples

Table S3a,b provides the mass concentration of PM10, elemental and organic carbon
(EC and OC, respectively), ionic species, and elements in winter and spring samples, respec-
tively. Figure S7a,b displays the day-by-day changes of the most abundant chemical species
RAs in the winter and spring samples, respectively, and shows the relatedness between
samples by means of chemical species BCi,jdissimilarity dendrograms. The comparison
of Figure 1 and Figure S7 shows that the sample clustering based on the RA-BCi,j dissimi-
larity dendrogram of potential human and plant pathogens, non-pathogenic species, and
unclassified bacterial species is different from the corresponding one based on chemical
component RAs. This last result likely suggests that bacterial species and chemical compo-
nents were differently affected by pollution sources, meteorological parameters, and/or
long range transported air masses [15]. The link of potential human and plant pathogens,
and non-pathogenic species with meteorological parameters and chemical components was
analyzed to obtain a better understanding of the factors affecting their structure and sea-
sonal change. Temperature (T), relative humidity (RH), pressure (P), cumulative rain (CR),
wind direction (WD), and speed (WS) were the investigated meteorological parameters,
which may affect surface emissions and atmospheric bacterial concentrations. Temperature
and wind speed are the most relevant parameters when bacteria are emitted by local
sources [49].

Our analysis was restricted to the 10 most abundant and pervasive potential hu-
man and plant pathogens and non-pathogenic species, requiring that the most abundant
pathogens were also detected at least in four out of the 10 winter or spring samples to
better investigate their inter-relationships.

3.2.1. Analysis of the 10 Most Abundant and Pervasive Potential (Opportunistic) Human
Pathogens in Winter and Spring

Figure 2 shows the mean percentage contributions of the 10 most abundant and
pervasive potential human pathogens in (a) winter and (b) spring. Their RA in the winter
and spring PM10 samples is shown in Figure S8a,b. Five out of the 10 most abundant
human pathogens were only detected in winter and spring, according to Figure 2. Human
pathogen RAs varied within the (1.77–38.31%) and (1.81–26.63%) range in winter and
spring, respectively. The <1.77% (winter) and <1.81% (spring) mean within-sample RA
human pathogenic species, in addition to the corresponding not-pervasive high-RA human
pathogens, denoted as Other species, in winter and spring, respectively, are also represented
in each plot. The Other species RA increased from winter (16.46%) to spring (20.15%). In
fact, the total species number increased more than twice from winter to spring (Table S1).
The RA-BCi,j matrix calculated by considering the 10 most abundant and pervasive human
pathogens in winter and spring is shown in Table S4a,b, respectively. Their values spanned
the 0.26–1.00 and the 0.06–0.91 range in winter and spring, respectively, and 13.7% of the
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RA-BCi,j values were ≥0.91 in winter. Therefore, although the total number of human
pathogens increased from winter to spring (Figure S3a,b), the sample dissimilarity on
average decreased from winter to spring. The reduced amount of wet-scavenging processes
and the more stagnant atmospheric conditions in spring likely contributed to this result.
Dendrograms based on the RA-BCi,j dissimilarity indices are shown in Figure S8a,b to
display the relatedness of human pathogens in the winter and spring samples, respectively.

Figure 2. Mean percentage contribution (on a logarithmic scale) of the 10 most abundant potential and pervasive human
pathogenic species in (a) winter and (b) spring: Sphingobacterium multivorum (S. multivorum), Johnsonella ignava (J. ignava),
Streptococcus bovis (S. bovis), Staphylococcus aureus (S. aureus), Clostridium cadaveris (C. cadaveris), Peptococcus niger (P. niger),
Propionibacterium avidum (P. avidum), Propionibacterium acnes (P. acnes), Providencia rettgeri (P. rettgeri), Acinetobacter lwoffii (A.
lwoffii), Acinetobacter ursingii (A. ursingii), Acinetobacter johnsonii (A. johnsonii), Enterobacter aerogenes (E. aerogenes), Enterobacter
amnigenus (E. amnigenus), and Enterobacter hormaechei (E. hormaechei). Error bars represent the standard error of the mean.
Phyla related to each species are also reported on the left (Prot.: Proteobacteria, Actin.: Actinobacteria, Firm.: Firmicutes,
Bact.: Bacteroidetes).

Proteobacteria potential human pathogens were the most abundant in both winter
and spring, respectively (Figure 2a,b), with Proteobacteria being the most abundant phy-
lum [15]. The sample clustering depicted by Figure S8a shows that Enterobacter hormaechei,
the most abundant human pathogen in winter (Figure 2a), was also the prevailing human
pathogen of the cluster composed of samples S2, S7, S5, S1, S9, and S4. In fact, E. hormaechei
is widespread in many environmental niches [50] and is commonly considered a causative
pathogen of infections in nosocomial environments [51]. Propionibacterium acnes and Pepto-
coccus niger, the second and the third most abundant human pathogens, respectively, were
the only human pathogens in S8. Propionibacterium acnes is an opportunistic pathogen that
forms part of the normal microbiota on human skin and mucosal surfaces and growing
evidence also supports its important role in other human diseases [52–54]. Peptococcus
niger, a human pathogen only detected in winter, is a constituent of the normal intestinal
mucous membranes and umbilicus flora, and rarely isolated from human pathogenic
specimens [55]. The Other species RA reached the highest value (>50%) in S3 and the BC3,j
values spanned the 0.57–0.96 range because of the high S3 dissimilarity. Sample S3 was
significantly affected by desert dust from northwestern Africa, as shown in [15]. Desert
dust events may increase the microbial biodiversity [56–58]. Propionibacterium acnes and
Enterobacter hormaechei reached the highest contributions both in winter and in spring
(Figure 2a,b). In spring, Propionibacterium acnes was the prevailing human pathogen in S16
and S14, while Enterobacter hormaechei was the prevailing one in S11 and S20 (Figure S8b),
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which had a quite similar bacterial species structure (BC11,20= 0.06, Table S4b). In con-
clusion, besides showing the day-by-day changes of the most abundant and pervasive
human-pathogen RAs, Figure 2 also highlights the seasonal dependence of their RAs.

3.2.2. Correlations between the 10 Most Abundant and Pervasive Potential Human
Pathogens, and with PM10 and Chemical Component Mass Concentrations, and
Meteorological Parameters

The relationships among potential human pathogens, PM10 and chemical component
mass concentrations, and meteorological parameters were analyzed by means of Spearman
correlation coefficients and RDA tri-plots. The last ones are shown in Figure S9a,b for
winter and spring, respectively, to visualize the relationships between chemical compo-
nents as predictive variables and human pathogens as dependent variables. As reported in
Section 2.5, the abundances of all the identified most abundant and pervasive potential
human pathogens (both for the winter and spring samples) were not normally-distributed
based on the one-sample Kolmogorov–Smirnov test (p-values < 0.01, Table S5). Therefore,
this last result allowed us to use a non-parametric statistical method as the Spearman’s
correlation test for the human pathogen abundance characterization (Table S6). Table 1 lists
the human pathogens characterized in winter and spring by positive Spearman coefficients
significant at a p-level < 0.05 (*) and 0.01 (**). Spearman correlation coefficients (r) are
given in brackets. Peptococcus niger correlated with T (r = 0.70) is the only human pathogen
with strong positive correlations with meteorological parameters in winter. None of the
human pathogens were positively correlated with the meteorological parameters in spring.
Liu et al. [5] found that RH was the most crucial meteorological parameter positively
correlated with pathogenic bacteria at Hangzhou (China). Table 1 also highlights rather
few correlations among the potential human pathogens and between human pathogens
and PM10 and chemical component mass concentrations. As an example, a very strong
correlation occurred between Enterobacter hormaechei and Enterobacter amnigenus in winter
and spring, respectively. The other strong correlations in winter occurred between Acineto-
bacter ursingii, Acinetobacter johnsonii, and Enterobacter aerogenes. The correlations among
human pathogens increased from winter to spring. Propionibacterium acnes was strongly
correlated with Zn in winter and with Mg2+, MS−, Mo, and Sr in spring, while Clostridium
cadaveris, the only human pathogen significantly correlated with PM10 in winter, was
strongly correlated with As and Pb in winter and with MS-, V, Ca, and Sr in spring (Table 1).
However, rather few correlations occurred between potential human pathogens and chemi-
cal components, mainly in winter. Note that Zn, As, Sr, and Pb are mainly associated with
a mixed anthropogenic source, while Mg2+, MS−, V, and Ca are mainly associated with a
secondary marine source according to [14,59]. The correlations between human pathogens
and chemical components also increased from winter to spring.

The BCi,j dissimilarity indices with on average smaller values in spring than in winter
support this last comment. We must be aware that correlations of microorganisms with
chemical components depend on several factors as the microorganism habitat, the pathway
of their aerial dispersal from the source to the collecting site, the monitoring site pollution
sources, and/or the chemical species that facilitate their survival and growth. Furthermore,
the chemical composition of PM filters resulted from the contribution of different sources.
The elements As, Ba, Cd, Cr, Pb, V, Al, Ti, Br, Rb, Sr, and Zr have a prevalent anthropogenic
or environmental origin, while Mo, Ni, P, S, K, Ca, Mn, Fe, Cu, Zn, and Se, anions (Cl−,
NO3

−, and SO4
2−) and cations (Na+, NH4

+, and Mg2+) are also essential for the structure
and biochemical reactions of all living cells. Therefore, bacteria and/or other airborne
living beings (like eukaryotic microbes, plants, and viruses) captured by the filter during
the samplings may also contribute to the PM ions and elements, in addition to the ones
due to aerosol particles. Knowledge and technology gaps limit the understanding of
the relationships between chemical species and bacterial community and might lead to
contradictory results [60]. The comparison of Table 1 with RDA tri-plots (Figure S9) shows
that some relationships are common, while others are contrasting, likely because of the
dependence of the bacterial species arrows in RDA tri-plots also on sample location (black
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symbols), as discussed in [16]. Nevertheless, both Table 1 and the RDA tri-plots show that
the relationships vary from winter to spring. In fact, it can be observed from Figure S9
that the arrows associated with the spring chemical species concentrations were spread
over a wider area with respect to the corresponding winter arrows. The air mass aging
over the Mediterranean, typical of warm periods like spring and summer, favored the
mixing of particles of different types/sources [61] and, therefore likely contributed to this
result, in agreement with the findings reported in [16,35]. The AIC, AICc, and BIC index
values (Table S7) were estimated for the statistical representativeness of each RDA analysis
performed with relative abundances of human pathogens as “response variables” and
chemical species mass concentrations as “explanatory variables”, both for the winter and
for spring samples. We found negative values of AIC and BIC that could be due to the
limited number of the analyzed samples. However, the RDA analysis accuracy increased
with the decrease of these indices [62]. Table S7 shows that the statistical indices AIC, AICc,
and BIC decreased from winter to spring and, therefore, spring results are likely to be more
accurate than the winter ones [45]. This last result was also confirmed by the increase in
the total variance explained by the two RDA axes from winter to spring (Figure S9).

Table 1. Relationships between the 10 most abundant potential and pervasive human pathogens (blue) and with PM10 (grey)
and chemical species (pink) mass concentrations, and meteorological parameters (black) in winter and spring samples. The
related Spearman correlation coefficient is reported in brackets (values significant at a p-level < 0.05 and 0.01 are marked by
* and **, respectively). Underlined and bold-italic species represent the ones only found in winter and spring, respectively.

Potential Human Pathogens
Spearman Correlation Coefficients

Winter Spring

Enterobacter hormaechei Enterobacter amnigenus (0.95 **) Enterobacter amnigenus (0.79 **),
Cr (0.74 *)

Enterobacter amnigenus Enterobacter hormaechei (0.95 **) Enterobacter hormaechei (0.79 **)

Enterobacter aerogenes Acinetobacter ursingii (0.75 *), NH4
+ (0.71 *)

Acinetobacter johnsonii Acinetobacter ursingii (0.72 *),
NH4

+ (0.68 *), S (0.67 *)

Acinetobacter ursingii Acinetobacter johnsonii (0.72 *), Enterobacter
aerogenes (0.75 *)

Acinetobacter lwoffii

Providencia rettgeri

Propionibacterium acnes Zn (0.68 *) Propionibacterium avidum (0.93 **), Mg2+ (0.67*),
MS− (0.74 *), Mo (0.74 *), Sr (0.66 *)

Propionibacterium avidum Propionibacterium acnes (0.93 **), Clostridium
cadaveris (0.71 *), MS− (0.70 *), Sr (0.83 **)

Peptococcus niger Na+ (0.66 *), T (0.70 *)

Clostridium cadaveris PM10 (0.82 **), As (0.75 *), Pb (0.67 *)
Streptococcus bovis (0.68 *), Propionibacterium avidum

(0.71 *), Johnsonella ignava (0.87 **), MS− (0.66 *),
V (0.68 *), Ca (0.67 *), Sr (0.72 *)

Staphylococcus aureus

Streptococcus bovis Clostridium cadaveris (0.68 *),
Johnsonella ignava (0.77 **)

Johnsonella ignava

Clostridium cadaveris (0.87 **), Streptococcus bovis
(0.77 **), PM10 (0.63 *), Ni (0.63 *), V (0.77 **),

Ca (0.65 *),
Sr (0.70 *)

Sphingobacterium multivorum
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3.2.3. Analysis of the Most Abundant and Pervasive Potential (Opportunistic) Plant
Pathogenic Species in Winter and Spring

The RA of potential plant pathogens was rather small in all the winter samples
(Figure 1a). Consequently, three plant pathogens were only detected in four or more winter
PM10 samples (Figure S4a). Figure 3a shows their RAs. Other species represents the RA due
to all the remaining plant pathogens in winter. Enterobacter cloacae, the most abundant plant
pathogen, was detected in four winter samples, but only in two spring samples at quite
high RA. The winter RA-BCi,j dissimilarity matrix is shown in Table S8a, while Figure S10a
shows the three potential plant pathogen contributions in the 10 winter samples, in addition
to the RA-BCi,j dissimilarity dendrogram. The sample clustering depicted by Figure S10a
allowed us to identify a first cluster composed of S1, S4, and S2, where Enterobacter cloacae
is the prevailing pathogen, a second cluster made up of S6 and S3 where Sphingomonas
melonis prevails, and a third cluster made up of S7 and S5 where Pseudomonas viridiflava
prevails. P. viridiflava is a pectinolytic bacterium in the P. syringae complex with a broad
host range and capacity to live as either a pathogen or saprophyte [63].

Figure 3. Mean percentage contribution (on a logarithmic scale) of the most abundant potential and pervasive plant
pathogenic species in (a) winter and (b) spring: Bacillus megaterium (B. megaterium), Rathayibacter tritici (R. tritici), Clavibacter
michiganensis (C. michiganensis), Curtobacterium flaccumfaciens (C. flaccumfaciens), Agrobacterium larrymoorei (A. larrymoorei),
Erwinia mallotivora (E. mallotivora), Janthinobacterium agaricidamnosum (J. agaricidamnosum), Sphingomonas melonis (S. melonis),
Pseudomonas viridiflava (P. viridiflava), and Enterobacter cloacae (E. cloacae). Error bars represent the standard error of the mean.
Phyla related to each species are also reported on the left (Prot.: Proteobacteria, Actin.: Actinobacteria, Firm.: Firmicutes).

During the springs from 2006 to 2008, P. viridiflava caused an outbreak of bacterial blos-
som blight on Actinidia chinensis kiwi fruit plants in Italy [64]. Ten of the most abundant and
pervasive potential plant pathogenic species were detected in spring samples (Figure 3b).
Figure S10b shows the plant pathogen contributions in the 10 winter samples, in addition
to the RA-BCi,j dissimilarity dendrogram (with corresponding values in Table S8b). Janthi-
nobacterium agaricidamnosum, the most abundant plant pathogen in spring, was detected in
all the spring samples, while Curtobacterium flaccumfaciens and Sphingomonas melonis, the
second and third most abundant plant pathogens, were detected in all the spring samples
except S11, where Bacillus megaterium reaches the highest RA (Figure S10b).

3.2.4. Correlations between the Most Abundant and Pervasive Potential Plant Pathogens
and with Human Pathogens, PM10 and Chemical Component Mass Concentrations, and
Meteorological Parameters

The abundances of all the identified most abundant and pervasive potential plant
pathogens were not normally-distributed based on the one-sample Kolmogorov–Smirnov
test (p-values < 0.01, Table S5). Consequently, the spring and winter relationships between
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the most abundant and pervasive potential plant pathogens, and with the most abundant
and pervasive potential human pathogens, the PM10 and chemical component mass con-
centrations, and meteorological parameters were investigated by Spearman correlation
coefficients (Table S9) in addition to the RDA tri-plots. Table 2 summarizes very strong
(**) and strong (*) relationships from Spearman coefficients: plant pathogens were not
correlated among them in winter, while Enterobacter cloacae was the only plant pathogen
significantly and positively correlated with the identified potential human pathogens.
More specifically, it was correlated with Acinetobacter johnsonii (0.65*), Acinetobacter ursingii
(0.85**), and Enterobacter aerogenes (0.95**). Few positive and significant correlations also
occurred between plant pathogens and chemical component mass concentrations: Enter-
obacter cloacae was correlated with NH4

+ and Sphingomonas melonis was correlated with
Al, Si, and Ti. No plant pathogens were significantly correlated with PM10 mass con-
centrations in winter. Table 2 also shows that in winter Enterobacter cloacae is strongly
correlated with WD and Sphingomonas melonis with RH. Positive and strong/very strong
correlations between plant pathogens and with human pathogens increased from winter to
spring. Moreover, Table 2 shows that Sphingomonas melonis, Erwinia mallotivora, Pseudomonas
viridiflava, and Agrobacterium larrymoorei were correlated in spring with some chemical com-
ponents associated with a marine particle source, according to [14]. Rathayibacter tritici and
Agrobacterium larrymoorei were instead associated with chemical components representative
of soil dust source [14] in spring. Rathayibacter tritici is the only potential plant pathogen
correlated with the PM10 mass concentration in spring. Five out of 10 plant pathogens
were positively and significantly correlated in spring with meteorological parameters:
Sphingomonas melonis and Clavibacter michiganensis were correlated with T, Janthinobacterium
agaricidamnosum and Agrobacterium tumefaciens were correlated with WD, Curtobacterium
flaccumfaciens, Clavibacter michiganensis, and Agrobacterium tumefaciens were correlated with
WS. The long-distance dispersal of plant pathogens by the wind contributes to the spread
of plant diseases across and even between continents and may re-establish diseases in
areas where host plants are absent in some seasons [65]. Therefore, most relationships
between potential plant pathogens, chemical components, and meteorological parameters
vary from winter to spring (Table 2), as the RDA tri-plots also show (Figure S11a,b), even if
some results are in contrast to those in Table 2. Note that the statistical indices AIC, AICc,
and BIC (Table S7) also decreased from winter to spring, highlighting the larger statistical
significance of the RDA results in spring. The larger number of the most abundant and
pervasive potential plant pathogens identified in spring (10) than in winter (3) has likely
contributed to this last result.

Table 2. Relationships between the most abundant potential and pervasive plant pathogens (green) and with the most
abundant and pervasive potential human pathogens (blue), the PM10 (grey) and chemical species (pink) mass concentrations,
and meteorological parameters (black) in the winter and spring samples. The related Spearman correlation coefficient is
reported in brackets (values significant at a p-level < 0.05 and 0.01 are marked by * and **, respectively). Underlined and
bold-italic species represent the ones only found in winter and spring, respectively.

Potential Plant Pathogens
Spearman Correlation Coefficients

Winter Spring

Enterobacter cloacae
Enterobacter aerogenes (0.95 **), Acinetobacter

johnsonii (0.65 *), Acinetobacter ursingii
(0.85 **), NH4

+ (0.65 *), WD (0.75 *)

Pseudomonas viridiflava Na+ (0.73 *), Cl− (0.75 *)

Sphingomonas melonis Al (0.65 *), Si (0.65 *), Ti (0.69 *),
RH (0.67 *)

Clavibacter michiganensis (0.67 *), Mg2+ (0.79 **),
T (0.64 *)

Janthinobacterium
agaricidamnosum WD (0.64 *)
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Table 2. Cont.

Potential Plant Pathogens
Spearman Correlation Coefficients

Winter Spring

Erwinia mallotivora Agrobacterium larrymoorei (0.67 *), Streptococcus bovis
(0.74 *), Acinetobacter lwoffii (0.78 **), Cl− (0.75 *)

Agrobacterium
tumefaciens

Rathayibacter tritici (0.65 *), Propionibacterium acnes
(0.63 *), Ni (0.66 *),V (0.78 **), WD (0.64 *), WS (0.64 *)

Agrobacterium
larrymoorei

Erwinia mallotivora (0.67 *), Propionibacterium avidum
(0.68 *), Streptococcus bovis (0.70 *), Na+ (0.69 *), Cl−

(0.75 *), NO3
− (0.72 *), Mo (0.69 *)

Curtobacterium
flaccumfaciens

Clavibacter michiganensis (0.77 **), Propionibacterium
avidum (0.70 *), WS (0.71 *)

Clavibacter
michiganensis

Curtobacterium flaccumfaciens (0.77 **), Sphingomonas
melonis (0.67 *), T (0.65 *), WS (0.69 *)

Rathayibacter tritici

Agrobacterium tumefaciens (0.65 *), Propionibacterium
acnes (0.66 *), Clostridium cadaveris (0.83 **),

Streptococcus bovis (0.65 *), Propionibacterium avidum
(0.73 *), Johnsonella ignava (0.89 **), PM10 (0.72 *),

MS− (0.71 *), Ni (0.80 **), V (0.91 **), Al (0.68 *), Si
(0.71 *), Ca (0.70 *), Ti (0.69 *),Fe (0.68 *), Rb (0.66 *),

Sr (0.77 **)

Bacillus megaterium

3.2.5. Analysis of the 10 Most Abundant and Pervasive Potential Non-Pathogenic Species
in Winter and Spring

The mean percentage contributions of the 10 most abundant and pervasive poten-
tial non-pathogenic species in winter and spring are shown in Figures S12a and S13a,
respectively. Other species represents the RA of all the other non-pathogenic species, whose
contribution was as high as 31.69 and 60.70% in winter and spring, respectively, confirming
the increase and the large variability of the bacterial species in spring. The RA-BCi,j matrix
associated with the 10 most abundant and pervasive potential non-pathogenic species in
winter and spring is shown in Table S10a,b, respectively. Figures S12b and S13b show the
relative contribution of the most abundant and pervasive non-pathogenic species in the
winter and spring PM10 samples, respectively, in addition to the corresponding RA-BCi,j
dissimilarity dendrograms. Underlined non-pathogenic species in Figure S12a represent
the four only found in winter. Bold-italics species in Figure S13a represent the four (out
of 10) non-pathogenic species only found in spring. Calothrix parietina and Pseudomonas
plecoglossicida were the first and the second most abundant non-pathogenic species in
winter and in spring. Calothrix parietina was detected in all of the winter (Figure S12b) and
spring (Figure S13b) samples.

3.2.6. Correlations between the Most Abundant and Pervasive Potential Non-Pathogenic
Species, and with the Human and Plant Pathogens, PM10 and Chemical Component Mass
Concentrations, and Meteorological Parameters

Table S11a,b provide the Spearman correlation coefficients between the 10 most abun-
dant and pervasive potential non-pathogenic species (characterized by abundances not-
normally distributed as reported in Table S5) and with the potential and most abundant
and pervasive human and plant pathogens, PM10 and chemical component concentrations,
and meteorological parameters in winter and spring, respectively. Table 3 summarizes
their strong and very strong correlations. Most non-pathogenic species are inter-correlated
and correlated with potential human and plant pathogens both in winter and in spring,
even if some correlations vary from winter to spring. More specifically, Calothrix parietina,
which was the most abundant potential non-pathogenic species in winter and spring, was
only positively correlated with the human pathogen Peptococcus niger in winter, while in
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spring, it was correlated with the non-pathogenic species Thiomonas thermosulfata and Sph-
ingomonas oligophenolica, the human pathogen Acinetobacter lwoffii, and the plant pathogen
Erwinia mallotivora. Rather few correlations occurred in winter between the most abundant
non-pathogenic species and the investigated chemical components and meteorological
parameters. In particular, Table 3 shows that in winter Chryseobacterium hispanicum was
correlated with Pb and P, while Bacillus badius was correlated with Na+, Mg2+, Cl−, Al,
Si, Ti, Br, and WS. Several potential non-pathogenic species were positively correlated
with chemical components in spring, while Methylotenera mobilis (correlated with WS) and
Rhodococcus ruber (correlated with RH) were the only potential non-pathogenic species
correlated with meteorological parameters in spring.

Table 3. Relationships between the 10 most abundant potential and pervasive non-pathogens (ochre) and with the 10 most
abundant potential and pervasive human pathogens (blue), the most abundant and pervasive plant pathogens (green),
PM10 (grey) and chemical species (pink) mass concentrations, and meteorological parameters (black) in winter and spring
samples. The related Spearman correlation coefficient is reported in brackets (values significant at a p-level < 0.05 and
0.01 are marked by * and **, respectively). Underlined and bold-italic species represent the ones only found in winter and
spring, respectively.

Potential Non-Pathogenic Species
Spearman Correlation Coefficients

Winter Spring

Calothrix parietina Peptococcus niger (0.89 **)
Thiomonas thermosulfata (0.78 **), Sphingomonas

oligophenolica (0.75 *), Acinetobacter lwoffii
(0.66 *), Erwinia mallotivora (0.73 *)

Pseudomonas plecoglossicida

Pseudomonas entomophila (0.96 **),
Arthrospira fusiformis (0.85 **),

Pseudomonas putida (0.93 **), Enterobacter
aerogenes (0.70 *)

Pseudomonas entomophila (0.82 **), Enterobacter
aerogenes (0.80 **), Cd (0.70 *), Cr (0.72 *)

Stenotrophomonas geniculata Staphylococcus aureus (0.71 *)

Hyphomicrobium zavarzinii Rhodococcus ruber (0.93 **) Rhodococcus ruber (0.90 **)

Pseudomonas entomophila

Pseudomonas plecoglossicida (0.96 **),
Arthrospira fusiformis (0.93 **),

Chryseobacterium hispanicum (0.75 *),
Pseudomonas putida (0.85 **), Acinetobacter

johnsonii (0.63 *), Enterobacter aerogenes
(0.80 **), Enterobacter cloacae (0.77 **)

Thiomonas thermosulfata

Calothrix parietina (0.78 **), Sphingomonas
oligophenolica (0.79 **), Propionibacterium acnes

(0.78 **), Propionibacterium avidum (0.71 *),
Mg2+ (0.79 **), Sr (0.66 *)

Methylotenera mobilis Clavibacter michiganensis (0.68 *), Mg2+ (0.70 *),
Mo (0.69 *), Br (0.77 **), WS (0.65 *)

Sphingomonas oligophenolica

Calothrix parietina (0.75 *), Thiomonas
thermosulfata

(0.79 **), Streptococcus bovis (0.84 **),
Acinetobacter lwoffii (0.64 *), Johnsonella ignava

(0.77 **), Erwinia mallotivora
(0.66 *), Rathayibacter tritici (0.71 *), Sr (0.65 *)

Arthrospira fusiformis

Pseudomonas plecoglossicida (0.85 **),
Pseudomonas entomophila (0.93 **),

Chryseobacterium hispanicum (0.90 **),
Pseudomonas putida (0.73 *), Acinetobacter

ursingii (0.77 **), Enterobacter aerogenes
(0.87 **), Enterobacter cloacae (0.86 **)

Chryseobacterium hispanicum (0.90 **),
Ba (0.82 **)
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Table 3. Cont.

Potential Non-Pathogenic Species
Spearman Correlation Coefficients

Winter Spring

Chryseobacterium hispanicum

Pseudomonas entomophila (0.75 **),
Arthrospira fusiformis (0.90 **),
Acinetobacter johnsonii (0.67 *),

Acinetobacter ursingii (0.89**), Enterobacter
aerogenes (0.93 **), Enterobacter cloacae

(0.93 **), Pb (0.65 *), P (0.64 *)

Arthrospira fusiformis (0.90 **), Ba (0.79 **),
Cr (0.70 *)

Pseudomonas putida

Pseudomonas plecoglossicida (0.93 **),
Pseudomonas entomophila (0.85 **),

Arthrospira fusiformis (0.73 *), Enterobacter
hormaechei (0.79 **), Enterobacter

amnigenus (0.68 *)

Rhodococcus ruber Hyphomicrobium zavarzinii (0.93 **) Hyphomicrobium zavarzinii (0.90 **), RH (0.74 *)

Bacillus badius

Sphingomonas melonis (0.71 *),
Na+ (0.85 **), Mg2+ (0.78 **), Cl− (0.84 **),

Al (0.86 **), Si (0.86 **), Ti (0.83 **),
Br (0.67 *), WS (0.72 *)

Bacillus aryabhattai Bacillus megaterium (0.83 **)

The RDA tri-plots shown in Figure S14 also indicate that the correlations of non-
pathogens with chemical components varied from (a) winter to (b) spring, although some
results were in contrast with those from the Spearman coefficients reported in Table 3.
Table S7 highlights the absence of relevant seasonal changes of the AIC, AICc, and BIC
values, in accordance with the small seasonal change of the total variance explained by the
two RDA axes.

3.3. Carriers of Potential Non-Pathogenic Species in Winter and Spring

Species–species interactions indicate the possibility of one bacterial species being
found in or on another species (named “carrier”). The seasonal dependence of non-
pathogen-carriers was analyzed to contribute to their characterization. We used the EID2
database, which provides a full list of species–species interactions. We restricted the
analysis to the 122 and the 413 non-pathogenic species exclusively found in winter and
spring, respectively, to better visualize the seasonal changes. The screening of our non-
pathogenic database showed that 36 out of 122 (29%) and 92 out of 413 (22%) bacterial
species were in common with the EID2 database. Therefore, the species–species interaction
analysis was further restricted to the 36 and 92 non-pathogenic species detected in winter
and spring, respectively, which are listed in Table S12a,b, respectively. Figure S15 shows the
carrier contributions in (a) winter and in (b) spring. Non-pathogen-carriers showed some
seasonal variations: Mollusca were detected as a carrier only in winter, while green algae,
fungi, rodents, other plants, and reptiles were exclusively spring carriers and all the other
carriers were common. Higher plant contribution increased from 15% in winter to 34% in
spring, likely due to the spring growth of vegetation favoring their aerial dispersal. The
contributions due to Cnidaria and fish, 8 and 14% in winter, respectively, decreased up to 1
and 6% in spring, respectively. This last result is likely due to the winter-to-spring decrease
in the advection of aerosol and bioaerosols from the sea, as the winter-to-spring decrease
in (Na+ + Cl−) mass percentage from 15 to 5% also indicates (Table S3a,b). Although these
last results were restricted to a small number of non-pathogens, they may indicate that
seasonal changes of species-carriers may contribute to the seasonal dependence of the
bacterial species RAs.
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4. Conclusions

In this work, we provided a preliminary local database of airborne (human and plant)
potential (opportunistic) pathogenic and non-pathogenic bacterial species in PM10 samples
collected at a monitoring site in southeastern Italy. The 16S rRNA gene metabarcoding
approach allowed for the detection of 1187 species. The comparison of the identified species-
dataset with the corresponding ones from the NCBI revealed that only 366 bacterial species
were common to the two datasets because of the high worldwide variability of bacterial
species. The analysis of relationships between potential (opportunistic) pathogenic and non-
pathogenic species with chemical components and meteorological parameters contributed
to the characterization of the environmental parameters affecting the bacterial structure.

• Sample chemical composition and bacterial community varied from winter to spring.
In particular, the total number of detected bacterial species increased more than twice
from winter to spring. The stagnant and more favorable atmospheric conditions in
spring for the bacterial survival and long-distance aerial dispersal likely contributed
to this result, in addition to the seasonal dependence of the bacterial species-carriers.

• The number of strong relationships between potential (human and plant) pathogens
and non-pathogens, chemical components, and meteorological parameters increased
slightly from winter to spring, according to the Spearman coefficients.

• Rather few potential (opportunistic) human pathogens were significantly correlated
with meteorological parameters. Conversely, many potential plant pathogens were
strongly and positively correlated with wind direction and speed in winter and spring,
suggesting that the dispersal of plant pathogens by the wind may likely contribute to
the spreading of plant diseases.

• In winter, some potential human pathogens were correlated with chemical components
that are tracers of marine and soil dust/mixed anthropogenic sources. Conversely,
in spring, some potential human pathogens were mainly correlated with chemical
components considered as marine aerosol tracers.

• We found that potential plant pathogens were not correlated among them in winter
and that Enterobacter cloacae was the only plant pathogen significantly and positively
correlated with the identified potential human pathogens. Few positive and signif-
icant correlations occurred between the plant pathogens and chemical component
mass concentrations.

Most chemical components correlated with bacterial species were also tracers of
the bacteria main habitats as well as being essential for the structure and metabolism of
all living cells. Hence, airborne living beings caught by the sampling filters may also
have contributed to the PM chemical components. The weak knowledge of the latter
contributions may limit the understanding of the relationships between pollution and
bacterial community.

In conclusion, besides providing a preliminary database of airborne potential (op-
portunistic human and plant) pathogenic and non-pathogenic species representative of a
central Mediterranean coastal site, our paper also investigated their inter-relationships and
those with chemical components and meteorological parameters. The reported pilot study
and its results could be of large interest since they contribute to the characterization of the
main Mediterranean potential (opportunistic) pathogens, and hence to the studies required
for the detection of potential epidemics due to airborne pathogens. Moreover, the deduced
local dataset could be a starting point for setting up a culture-based approach aimed at
targeted isolation of presumptive pathogenic bacterial strains and at in vitro and in vivo
virulence analyses.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/atmos12050654/s1, Figure S1: Geographical location of the monitoring site; Figure S2: Heat
maps of bacterial species abundances; Figure S3: Heat maps of potential human pathogenic species
abundances; Figure S4: Heat maps of potential plant pathogenic species abundances; Figure S5:
Heat maps of potential non-pathogenic species abundances; Figure S6: Contribution of potential
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plant pathogenic, human pathogenic, non-pathogenic, and unclassified bacterial species; Figure S7:
Contribution and Bray–Curtis dissimilarity dendrograms of chemical species; Figure S8: Contribution
and Bray–Curtis dissimilarity dendrograms of potential and pervasive human pathogenic species;
Figure S9: Redundancy discriminant analysis ordination plot of potential and pervasive human
pathogenic species; Figure S10: Contribution and Bray–Curtis dissimilarity dendrograms of potential
and pervasive plant pathogenic species; Figure S11: Redundancy discriminant analysis ordination
plot of potential and pervasive plant pathogenic species; Figure S12: Contribution and Bray-Curtis
dissimilarity dendrograms of potential and pervasive winter non-pathogenic species; Figure S13:
Contribution and Bray–Curtis dissimilarity dendrograms of potential and pervasive spring non-
pathogenic species; Figure S14: Redundancy discriminant analysis ordination plot of potential and
pervasive non-pathogenic species; Figure S15: EID2 carrier contribution of potential non-pathogenic
species; Table S1: PM10 concentration and number of OTUs, phyla, orders, genera, and species;
Table S2: Bray–Curtis dissimilarity matrix for winter and spring samples; Table S3: Chemical species
mass concentrations; Table S4: Bray–Curtis dissimilarity matrix for the most abundant potential and
pervasive human pathogens; Table S5: Results from the Kolmogorov–Smirnov test for potential and
pervasive pathogens and non-pathogens, PM10 concentration, and meteorological parameters; Table
S6: Spearman correlation coefficient matrix for the most abundant potential and pervasive human
pathogens; Table S7: AIC, AICc, and BIC values based on RDA analyses of potential and pervasive
human, plant, and non-pathogens, and chemical species; Table S8: Bray–Curtis dissimilarity matrix
for the most abundant potential and pervasive plant pathogens; Table S9: Spearman correlation
coefficient matrix for the most abundant potential and pervasive plant pathogens; Table S10: Bray–
Curtis dissimilarity matrix for most abundant potential and pervasive non-pathogenic species;
Table S11: Spearman correlation coefficient matrix for the most abundant potential and pervasive
non-pathogenic species; Table S12: EID2 carriers of non-pathogenic species.
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