22 research outputs found

    The Mechanisms of the Anti-Inflammatory and Anti-Apoptotic Effects of Omega-3 Polyunsaturated Fatty Acids during Methotrexate-Induced Intestinal Damage in Cell Line and in a Rat Model

    No full text
    Background: The aim of this study was to examine the anti-inflammatory and anti-apoptotic patterns of omega-3 polyunsaturated fatty acids (n-3 PUFAs) during methotrexate (MTX) induced intestinal damage in cell culture and in a rat model. Methods: Non-treated and treated with MTX HT 29 and HCT116cells were exposed to increasing doses of n-3 PUFAs and cell viability was evaluated using PrestoBlueÂź assay. Male Sprague-Dawley rats were divided into 4 experimental groups: Control rats, CONTR+n-3 PUFA rats that were treated with oral n-3 PUFA, MTX rats were treated with MTX given IP, and MTX+n-3 PUFA rats were treated with oral n-3 PUFA before and following injection of MTX. Intestinal mucosal parameters and mucosal inflammation, enterocyte proliferation and apoptosis, TNF-α in mucosal tissue and plasma (ELISA), NF-ÎșB, COX-2, TNF-α, Fas, FasL, Fadd, Bid, Bax and Bcl-2gene and protein levels were determined 72 h following MTX injection. Results: Exposure of HT 29 and HCT116cells to n-3 PUFA attenuated inhibiting effects of MTX on cell viability. MTX-n-3 PUFA rats demonstrated a lower intestinal injury score and enhanced intestinal repair. A significant decrease in enterocyte apoptosis in MTX+n-3 PUFA rats was accompanied by decreased TNF-α, FAS, FasL, FADD and BID mRNA levels. Decreased NF-ÎșB, COX-2 and TNF-α levels in mucosa was accompanied by a decreased number of IELs and macrophages. Conclusions: n-3 PUFAs inhibit NF-ÎșB/COX-2 induced production of pro-inflammatory cytokines and inhibit cell apoptosis mainly by extrinsic pathway in rats with MTX-induced intestinal damage

    Non-invasive assessment of normal and impaired iron homeostasis in the brain

    No full text
    Abstract Strict iron regulation is essential for normal brain function. The iron homeostasis, determined by the milieu of available iron compounds, is impaired in aging, neurodegenerative diseases and cancer. However, non-invasive assessment of different molecular iron environments implicating brain tissue’s iron homeostasis remains a challenge. We present a magnetic resonance imaging (MRI) technology sensitive to the iron homeostasis of the living brain (the r1-r2 * relaxivity). In vitro, our MRI approach reveals the distinct paramagnetic properties of ferritin, transferrin and ferrous iron ions. In the in vivo human brain, we validate our approach against ex vivo iron compounds quantification and gene expression. Our approach varies with the iron mobilization capacity across brain regions and in aging. It reveals brain tumors’ iron homeostasis, and enhances the distinction between tumor tissue and non-pathological tissue without contrast agents. Therefore, our approach may allow for non-invasive research and diagnosis of iron homeostasis in living human brains

    MOESM1 of A non-aggressive, highly efficient, enzymatic method for dissociation of human brain-tumors and brain-tissues to viable single-cells

    No full text
    Additional file 1: Figure S1. Grading of dissociation quality of all glial tumors. The three different parameters accounting for the dissociation cumulative grade-CG, i.e. Clumps, Remnants and Gooeyness, were graded following tumor dissociation using NP -2hr, dispase- 1hr, NP-ON and dispase-ON. The parameters were graded from 1 to 3, with 1 representing low dissociation quality and 3- high dissociation quality culture (see materials and methods). Statistics: Cell remnants following dissociation using NP-2hr to dispase-1hr (P < 0.03)
    corecore