84 research outputs found

    我が国におけるケースマネジメント専門機関のあり方についての一考察(その1)

    Get PDF
    今、我が国の社会福祉は、「社会福祉基礎構造改革」の名の下に、大改革が進み、児童福祉法の一部改正、介護保険制度の創設、そして、社会福祉事業法が社会福祉法に改正されて、ひとまず決着を見た。改革のポイントは、(1)「措置制度」から「契約制度」への移行、(2)利用者の自由な選択によるサービスの利用、(3)地域福祉の重視、(4)ケアマネジメント(本論ではケースマネジメントという)技法の導入、(5)多様な事業主体の算入、(6)権利擁護事業の確立である。たしかに改革の基本理念や、改革のポイントは、法文を読む限りにおいては、各法律に反映されている。しかし、現場の声などから推測すれば、実態が必ずしも伴わず、"法律あって実態なしの感がしてならない。そこで本論は、法・制度に照らして実践現場の実態を明かにし、真に利用者の自由な選択によるサービスの利用を援助していくための、ケースマネジメント専門機関の在り方を考察しようとするものである

    One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation

    Get PDF
    AbstractTo elucidate the epigenetic role of RNAi in mammals, we disrupted the gene for Eif2c2 (Ago2), which works as the sole slicer of RNAi in the Argonaute family. In mice, disruption of Eif2c2 leads to embryonic lethality early in development after the implantation stage. This phenotype is completely different from that in a previous report, but somewhat similar to the disruption of Dicer1, another important component of RNAi. We also show that Eif2c2 is not required for the maintenance of DNA methylation in imprinted genes, centromeric repeats, and Xist. This suggests that developmental defects in the Eif2c2-deficient mouse are caused not at the transcriptional level, but rather at the posttranscriptional level through the miRNA–protein complex

    Causes of Greenland temperature variability over the past 4000 years: Implications for North Hemispheric temperature change

    Get PDF
    第3回極域科学シンポジウム/第35回極域気水圏シンポジウム 11月29日(木) 国立国語研究所 2階多目的

    Characterization of Swallowing Sound : Preliminary Investigation of Normal Subjects

    Get PDF
    Objective The purpose of this study was to characterize the swallowing sound and identify the process of sound generation during swallowing in young healthy adults. Methods Thirty-three healthy volunteers were enrolled and allocated into three experimental groups. In experiment 1, a microphone was attached to one of eight cervical sites in 20 subjects, participants swallowed 5 ml water, and the sound waveform was recorded. In experiment 2, 10 subjects swallowed either 0, 5, 10, or 15 ml water during audio recording. In addition, participants consumed the 5 ml bolus in two different cervical postures. In experiment 3, the sound waveform and videofluoroscopy were simultaneously recorded while the three participants consumed 5 ml iopamidol solution. The duration and peak intensity ratio of the waveform were analyzed in all experimental groups. Results The acoustic analysis of the waveforms and videofluoroscopy suggested that the swallowing sound could be divided into three periods, each associated with a stage of the swallowing movement: the oral phase comprising posterior tongue and hyoid bone movement; the pharyngeal phase comprising larynx movement, hyoid bone elevation, epiglottis closure, and passage of the bolus through the esophagus orifice; and the repositioning phase comprising the return of the hyoid bone and larynx to their resting positions, and reopening of the epiglottis. Conclusion Acoustic analysis of swallowing sounds and videofluoroscopy suggests that the swallowing sound could be divided into three periods associated with each process of the swallowing movement: the oral phase comprising the posterior movement of the tongue and hyoid bone; the pharyngeal phase comprising the laryngeal movement, hyoid bone elevation, epiglottis closure, and the bolus passage to the esophagus orifice; and the repositioning phase comprising the repositioning of the hyoid bone and larynx, and reopening of the epiglottis

    ATF2 promotes urothelial cancer outgrowth via cooperation with androgen receptor signaling

    Get PDF
    We investigated the functional role of ATF2, a transcription factor normally activated via its phosphorylation in response to phospho-ERK/MAPK signals, in the outgrowth of urothelial cancer. In both neoplastic and non-neoplastic urothelial cells, the expression levels of androgen receptor (AR) correlated with those of phospho-ATF2. Dihydrotestosterone treatment in AR-positive bladder cancer cells also induced the expression of phospho-ATF2 and phospho-ERK as well as nuclear translocation and transcriptional activity of ATF2. Meanwhile, ATF2 knockdown via shRNA resulted in significant decreases in cell viability, migration and invasion of AR-positive bladder cancer lines, but not AR-negative lines, as well as significant increases and decreases in apoptosis or G0/G1 cell cycle phase and S or G2/M phase, respectively. Additionally, the growth of AR-positive tumors expressing ATF2-shRNA in xenograft-bearing mice was retarded, compared with that of control tumors. ATF2 knockdown also resulted in significant inhibition of neoplastic transformation induced by a chemical carcinogen 3-methylcholanthrene, as well as the expression of Bcl-2/cyclin-A2/cyclin-D1/JUN/MMP-2, in immortalized human normal urothelial SVHUC cells stably expressing AR, but not AR-negative SVHUC cells. Finally, immunohistochemistry in surgical specimens demonstrated significant elevation of ATF2/phospho-ATF2/phospho-ERK expression in bladder tumors, compared with non-neoplastic urothelial tissues. Multivariate analysis further showed that moderate/strong ATF2 expression and phospho-ATF2 positivity were independent predictors for recurrence of low-grade tumors (hazard ratio (HR) = 2.956, P = 0.045) and cancer-specific mortality of muscle-invasive tumors (HR = 5.317, P = 0.012), respectively. Thus, ATF2 appears to be activated in urothelial cells through the AR pathway and promotes the development and progression of urothelial cancer

    Establishment and characterization of a novel treatment‐related neuroendocrine prostate cancer cell line KUCaP13

    Get PDF
    The prevalence of neuroendocrine prostate cancer (NEPC) arising from adenocarcinoma (AC) upon potent androgen receptor (AR) pathway inhibition is increasing. Deeper understanding of NEPC biology and development of novel therapeutic agents are needed. However, research is hindered by the paucity of research models, especially cell lines developed from NEPC patients. We established a novel NEPC cell line, KUCaP13, from tissue of a patient initially diagnosed with AC which later recurred as NEPC. The cell line has been maintained permanently in vitro under regular cell culture conditions and is amenable to gene engineering with lentivirus. KUCaP13 cells lack the expression of AR and overexpress NEPC-associated genes, including SOX2, EZH2, AURKA, PEG10, POU3F2, ENO2, and FOXA2. Importantly, the cell line maintains the homozygous deletion of CHD1, which was confirmed in the primary AC of the index patient. Loss of heterozygosity of TP53 and PTEN, and an allelic loss of RB1 with a transcriptomic signature compatible with Rb pathway aberration were revealed. Knockdown of PEG10 using shRNA significantly suppressed growth in vivo. Introduction of luciferase allowed serial monitoring of cells implanted orthotopically or in the renal subcapsule. Although H3K27me was reduced by EZH2 inhibition, reversion to AC was not observed. KUCaP13 is the first patient-derived, treatment-related NEPC cell line with triple loss of tumor suppressors critical for NEPC development through lineage plasticity. It could be valuable in research to deepen the understanding of NEPC

    Prediction of heading date, culm length, and biomass from canopy-height-related parameters derived from time-series UAV observations of rice

    Get PDF
    Unmanned aerial vehicles (UAVs) are powerful tools for monitoring crops for high-throughput phenotyping. Time-series aerial photography of fields can record the whole process of crop growth. Canopy height (CH), which is vertical plant growth, has been used as an indicator for the evaluation of lodging tolerance and the prediction of biomass and yield. However, there have been few attempts to use UAV-derived time-series CH data for field testing of crop lines. Here we provide a novel framework for trait prediction using CH data in rice. We generated UAV-based digital surface models of crops to extract CH data of 30 Japanese rice cultivars in 2019, 2020, and 2021. CH-related parameters were calculated in a non-linear time-series model as an S-shaped plant growth curve. The maximum saturation CH value was the most important predictor for culm length. The time point at the maximum CH contributed to the prediction of days to heading, and was able to predict stem and leaf weight and aboveground weight, possibly reflecting the association of biomass with duration of vegetative growth. These results indicate that the CH-related parameters acquired by UAV can be useful as predictors of traits typically measured by hand
    corecore